Abstract:
An electrostatic discharge (ESD) protective device structure is disclosed. The ESD protection device includes: at least a first conductive type metal-oxide semiconductor (MOS), in which the drain and source of the first conductive type MOS are electrically connected to a first power terminal and a second power terminal separately; at least a second conductive type diffusion region; and at least a dummy gate disposed between the first conductive type MOS and the second conductive type diffusion region, wherein the gate length of the dummy gate is less than the gate length of the first conductive type MOS gate, such that the junction between the second conductive type diffusion region and the drain of the first conductive type MOS have a low breakdown voltage.
Abstract:
An interconnection structure for a pad region of the substrate is provided. A semiconductor circuit and a pad are disposed on the substrate of the pad region. The interconnection structure includes a first and a second dielectric layers, via plugs and contact plugs. The patterned conductive layer includes an auxiliary layer having a plurality of gaps and a plurality of first wire lines disposed between the auxiliary layers passes through the gaps and exits from the pad region. The first dielectric layer is disposed between the patterned conductive layer and the pad. The via plugs are disposed in the first dielectric layer for connecting the auxiliary layer and the pad. The second dielectric layer is disposed between the substrate and the patterned conductive layer. The contact plugs are disposed in the second dielectric layer for electrically connecting the semiconductor circuit and the first wire lines.
Abstract:
A CMOS image sensor (CIS) process is described. A semiconductor substrate is provided, and then a gate dielectric layer, a gate material layer and a thickening layer are sequentially formed on the substrate, wherein the thickening layer includes at least a hard mask layer. The thickening layer is defined to form a transfer-gate pattern, and then the transfer-gate pattern is used as an etching mask to pattern the gate material layer and form a transfer gate. Ion implantation is then conducted to form a PN diode in the substrate with the transfer-gate pattern and the transfer gate as a mask.
Abstract:
An ultra high voltage MOS transistor device includes a substrate; a source region formed in the substrate; a first doping region formed in the substrate and bordering upon the source region; a first ion well encompassing the source region and the first doping region; a gate oxide layer formed on the source region and on the first ion well; a field oxide layer connected with the gate oxide layer and formed on a semiconductor region; a dielectric layer stacked on the field oxide layer; a drain region formed at one side of the field oxide layer and being spaced apart from the source region; a second ion well encompassing the drain region; and a gate disposed on the gate oxide layer and laterally extending to the field oxide layer and onto the dielectric layer.
Abstract:
A CMOS image sensor is described, based on a substrate and including a transfer transistor, a reset transistor, a source follower transistor, a select transistor, a photodiode and a floating node structure. The substrate includes a floating node area between the transfer transistor and the reset transistor. The floating node structure includes a P-well in the substrate within the floating node area, an N-well in the substrate outside of the floating node region, a lightly N-doped region having a portion in the P-well and another portion connected with the N-well, a heavily N-doped region in the N-well, and a contact plug for coupling the heavily N-doped region to the source follower transistor.
Abstract:
A method of fabricating an MOS device is provided. First, gates and source/drain regions of transistors are formed on a substrate. A photodiode doped region and a floating node doped region are formed in the substrate. Thereafter, a spacer stacked layer including a bottom layer, an inter-layer and a top layer is formed to cover each gate of the transistors. Afterwards, a first mask layer having an opening exposing at least the photodiode doped region is formed on the substrate, and then the top layer exposed by the opening is removed. Next, the first mask layer is removed, and then a second mask layer is formed on a region correspondingly exposed by the opening. A portion of the top layer and the inter-layer exposed by the second mask layer is removed to form spacers on sidewalls of the gates.
Abstract:
A floating node structure of a CMOS image sensor disposed in a floating node region defined by an isolation structure of a substrate is described. The floating node structure comprises an n-doped region within the floating node region, a p-well surrounding the periphery and the bottom of the n-doped region in the substrate within the folating node region, a surface passivation layer disposed at least on the surface of the p-well, and a contact plug coupling the n-doped region to a source follower transistor of the CMOS image sensor.
Abstract:
A CMOS image sensor is described, based on a substrate and including a transfer transistor, a reset transistor, a source follower transistor, a select transistor, a photodiode and a floating node structure. The substrate includes a floating node area between the transfer transistor and the reset transistor. The floating node structure includes a P-well in the substrate within the floating node area, an N-well in the substrate outside of the floating node region, a lightly N-doped region having a portion in the P-well and another portion connected with the N-well, a heavily N-doped region in the N-well, and a contact plug for coupling the heavily N-doped region to the source follower transistor.
Abstract:
The invention is directed to a method for manufacturing a field plate of a high voltage device. The field plate is located on a drift region of a substrate, wherein an isolation structure is located on the drift region. The method comprises steps of forming a first dielectric layer over the substrate and then forming a first patterned conductive layer on the first dielectric layer, wherein the first patterned conductive layer is located over the isolation structure and exposes a portion of a top surface of the first dielectric layer. The exposed portion of the first dielectric layer is removed until a top surface of the isolation structure so as to form a plurality of vertical fin-type dielectric bottoms.
Abstract:
A junction varactor includes a gate finger lying across an ion well of a semiconductor substrate; a gate dielectric situated between the gate finger and the ion well; a first ion diffusion region with first conductivity type located in the ion well at one side of the gate finger, the first ion diffusion region serving as an anode of the junction varactor; and a second ion diffusion region with a second conductivity type located in the ion well at the other side of the gate finger, the second ion diffusion region serving as a cathode of the junction varactor. In operation, the gate of the junction varactor is biased to a gate voltage VG that is not equal to 0 volt.