Abstract:
Acoustic Voice Activity Detection (AVAD) methods and systems are described. The AVAD methods and systems, including corresponding algorithms or programs, use microphones to generate virtual directional microphones which have very similar noise responses and very dissimilar speech responses. The ratio of the energies of the virtual microphones is then calculated over a given window size and the ratio can then be used with a variety of methods to generate a VAD signal. The virtual microphones can be constructed using either an adaptive or a fixed filter.
Abstract:
Embodiments of the present application relate generally to electrical and electronic hardware, computer software, wired and wireless network communications, wearable, hand held, portable computing devices for facilitating communication of information, and the fields of healthcare and personal health. More specifically the present application relates to a new and useful systems, methods and apparatus for estimating body fat in a user with applications in the healthcare and personal health fields. An electronic device, such as a portable electronic device (e.g., smartphone, pad, tablet, etc.) may include software (e.g., an APP) to implement body fat estimates of a user and may use hardware and/or software resident in the electronic device (e.g., display, accelerometer, gyroscopes, transducers, vibration engines, speakers, microphones, GPS capability, etc.) to aid a user in placing the electronic device at instructed location on the user's body and to apply an impulse to the body at instructed locations.
Abstract:
Techniques for movement languages in wearable devices are described, including Receiving input from a sensor coupled to a wearable device, processing the input to determine a pattern, the pattern associated with a movement, referencing a pattern library stored in a database to compare the pattern to a set of patterns in the pattern library, and performing an operation based on a comparison of the pattern to the set of patterns.
Abstract:
Systems and methods to reduce the negative impact of wind on an electronic system include use of a first detector that receives a first signal and a second detector that receives a second signal. A voice activity detector (VAD) coupled to the first detector generates a VAD signal when the first signal corresponds to voiced speech. A wind detector coupled to the second detector correlates signals received at the second detector and derives from the correlation wind metrics that characterize wind noise that is acoustic disturbance corresponding to at least one of air flow and air pressure in the second detector. The wind detector controls a configuration of the second detector according to the wind metrics. The wind detector uses the wind metrics to dynamically control mixing of the first signal and the second signal to generate an output signal for transmission.
Abstract:
Spatial and temporal vector analysis in wearable devices using sensor data are described, including evaluating a motion to determine motion signals, the motion being evaluated using data provided by one or more sensors in data communication with a wearable device, isolating motion signals into one or more motion sub-signals, determining a spatial vector and a temporal vector associated with each of the one or more motion sub-signals, and transforming the spatial vector and the temporal vector into a data structure to be used by an application configured to analyze the data structure and to generate content associated with the motion.