Abstract:
An apparatus and method for detecting signals based on a Lattice Reduction (LR) algorithm in a Multiple Input Multiple Output (MIMO) wireless communication system are provided. The apparatus includes a plurality of operators for determining soft-decision values for respective streams by performing a soft modulo operation on respective symbol values included in a Receive (Rx) signal block multiplied by a lattice transformation matrix T, a plurality of inner decoders for determining Log Likelihood Ratio (LLR) values of codewords according to coding schemes for the respective streams by decoding the soft-decision values for the respective streams according to identical decoding scheme, a passer for restoring the LLR values representing the codewords generated in a transmitting end using the LLR values, and a plurality of outer decoders for determining LLR values of Transmit (Tx) bitstreams for the respective streams by decoding the LLR values representing the codewords generated in the transmitting end for the respective streams according to decoding schemes for the respective streams.
Abstract:
The present invention relates to a succinic acid-producing mutant microorganism that is able to utilize sucrose and glycerol simultaneously as carbon sources. More particularly, the present invention relates to a succinic acid-producing mutant microorganism that is able to utilize sucrose and glycerol simultaneously for succinic acid production, the mutant organism being obtained by relieving the mechanism of sucrose-mediated catabolite repression of glycerol in a succinic acid-producing microorganism.As described above, when the succinic acid-producing mutant microorganism is cultured, it utilizes sucrose and glycerol simultaneously so that succinic acid can be produced with high productivity in a maximum yield approaching the theoretical yield while the production of byproducts is minimized. In addition, according to the present invention, various reduced chemicals which have been produced in low yields in conventional methods can be more effectively produced.
Abstract:
A wireless mesh network system generates at least one virtual node within a transmission area of a specific mesh node when no mesh nodes exist in two or three continuous quadrants within the transmission area with reference to the specific mesh node. Also, the system performs routing by combining uplink and downlink routing methods so as to support unicast between the mesh nodes in a domain. Further, a channel access order of the mesh nodes is determined based on the potential values allocated to the mesh nodes forming the wireless mesh network according to the field theory. In this instance, the channel access order can be established by a central control method by a central processor for controlling the wireless mesh network or a distributed control method using contention per mesh node.
Abstract:
A handover method in a plurality of wireless networks includes selecting one or more candidate networks from the plurality of wireless networks available to a mobile terminal of a user; calculating the latest connection time with a serving network currently serving the mobile terminal; deriving a history utility function based on the latest connection time; deriving system utility functions of the candidate networks in consideration of user and system environments; deriving selection functions for the candidate networks using the history utility function and the system utility functions; and selecting one of the candidate networks as a target network for handover using the selection functions. A target network for handover is selected using not only a system utility function reflecting user and system parameters but also a history utility function reflecting history information, thereby reducing the number of handovers and enhancing service quality.
Abstract:
A mooring system for a vessel includes an attachment unit configured to be detachably attached to a hull of the vessel; a robot arm including a plurality of arms, the arms being coupled to each other to turn in a vertical direction, the robot, arm extending by an arm actuator provided thereto to transfer the attachment unit to an attachment position of the hull; a rotation unit connected to the robot arm and allowing the robot arm to turn in a horizontal direction; and a mooring winch for winding a mooring cable to draw the attachment unit. A floating body or a quay wall may include the mooring system.
Abstract:
Disclosed is a high resolution image obtaining apparatus and method. The high resolution image obtaining apparatus may divide an input image frame into a background region and foreground region and apply an optimized resolution enhancement algorithm to each region, thereby effectively obtaining a high resolution image frame with respect to the input image frame.
Abstract:
Disclosed decoding method of the intra prediction mode comprises the steps of: determining whether an intra prediction mode of a present prediction unit is the same as a first candidate intra prediction mode or as a second candidate intra prediction mode on the basis of 1-bit information; and determining, among said first candidate intra prediction mode and said second candidate intra prediction mode, which candidate intra prediction mode is the same as the intra prediction mode of said present prediction unit on the basis of additional 1-bit information, if the intra prediction mode of the present prediction unit is the same as at least either the first candidate intra prediction mode or the second candidate intra prediction mode, and decoding the intra prediction mode of the present prediction unit.
Abstract:
The method of designing a flash translation layer includes receiving a logical address according to an external request and mapping a physical address that corresponds to the logical address. The mapping manages continuous logical addresses and physical addresses corresponding to the logical addresses as one mapping unit.
Abstract:
Provided is single-walled carbon nanotube saturable absorber production via a multi-vacuum filtration method, and more particularly, single-walled carbon nanotube saturable absorber production via a multi-vacuum filtration method, capable of depositing a carbon nanotube thin film on a filter using a vacuum chamber and a membrane filter, etching the filter using an etchant so as to be transferred to an upper surface of the polymer, coating the polymer on the carbon nanotube to thereby produce a carbon nanotube saturable absorber, as a method of producing a carbon nanotube thin film to transfer the thin film to the polymer using a multi-filtration method in order to produce a passive saturable absorber to be used in laser oscillation.