Abstract:
Provided are a lead-free solder, a solder paste, and a semiconductor device, and more particularly, a lead-free solder that includes Cu in a range from about 0.1 wt % to about 0.8 wt %, Pd in a range from about 0.001 wt % to about 0.1 wt %, Al in a range from about 0.001 wt % to about 0.1 wt %, Si in a range from about 0.001 wt % to about 0.1 wt %, and Sn and inevitable impurities as remainder, a solder paste and a semiconductor device including the lead-free solder. The lead-free solder and the solder paste are environment-friendly and have a high high-temperature stability and high reliability.
Abstract:
Disclosed herein are a nanopreparation having a micelle structure for diagnosis or treatment of cancer diseases, and a method of preparing the same, and more particularly, a nanopreparation having a micelle structure available for diagonosis or treatment of cancer diseases and a method for preparing the same, wherein the nanopreparation is prepared by encapsulating a photosensitizer by forming micelle with polymeric lipid DSPE-mPEG. The nanopreparation having the micelle structure according to the present invention has a size of 12 nm or less by encapsulating hypericin, which is a photosensitizer, by forming micelle with polymeric lipid DSPE-mPEG having a molecular weight of 1500 to 2500. Resultingly, the nanopreparation easily overcomes a blood-tumor barrier (BTB) and an interstitial fluid pressure and has light induced cytotoxicity efficiency that is about more than 2.5 times higher than that of the case where hypericin is used alone.
Abstract:
Provided are a tomography image generating method and an apparatus for generating a tomography image. The method of generating a tomography image includes, in response to a depth scan operation performed on an object, generating a candidate tomography image by using an interference signal acquired by the performed depth scan operation, determining a pixel pattern by using the generated candidate tomography image; and when the depth scan operation performed on the object is completed, generating a final tomography image of the object by using a finally determined pixel pattern. The generating the candidate tomography image and the determining are parallel processed by at least one processor during the depth scan operation being repeatedly performed.
Abstract:
Fiber scanning optical probes and medical imaging apparatuses including the same are provided. The fiber scanning optical probe includes an optical fiber; an actuator attached onto the optical fiber and configured to drive the optical fiber at a driving resonance frequency; a mass provided at a side of the optical fiber and configured to control the driving resonance frequency; and a frequency separator provided on a portion of the optical fiber between the actuator and the mass, the frequency separator being configured to separate the driving resonance frequency into separate resonance frequencies.
Abstract:
Provided is a haptic interface for allowing various information exchange in addition to transmitting accurate force information to an operator, and more particularly, a haptic device capable of transmitting more various kinds of information by transmitting necessary information to an operator by means of different kinds of sensations such as sight sensation, acoustic sensation, smell sensation, taste sensation or the like in addition to tactile sensation.In addition, provided is a haptic device, which may have an input point and an output point in accordance with each other or in discordance from each other, may have various output points to give a feedback to various points desired by an operator, may give a feedback by adjusting intensity of an output instead of outputting simple on/off signals when providing information to an operator by means of a feedback, and allows a feedback output intensity to be calculated in various ways according to an input amount and fed back to the operator when the input amount input through a haptic interface by the operator is adjustable.
Abstract:
A method of reconstructing a tomographic image in a medical imaging apparatus includes: acquiring a first image of an object and a second image of the object corresponding to an image to be reconstructed; determining, in the first image, a reference region corresponding to a unit region in the second image; and updating data in the unit region based on data contained in the reference region. Thus, a medical image having both high spatial resolution and high temporal resolution is reconstructed to have substantially reduced artifacts.
Abstract:
A method for generating an image by using a medical imaging apparatus includes acquiring first slab data which relates to a first imaging slab, acquiring second slab data which relates to a second imaging slab at a position which is different from a position of the first imaging slab, and generating a restored image by using data from among the acquired first slab data and data from among the acquired second slab data in slices which correspond to a same position on an object.
Abstract:
A catalyst slurry including a catalyst material, a polymer binder, a plurality of inorganic particles, wherein each particle includes an ionic group, a hydrophilic oligomer, and a solvent.
Abstract:
The present invention relates to a method for recovering methane gas from natural gas hydrates. In particular, it includes the step of adding a gas mixture containing air and carbon dioxide to an NGH of deep sea and the step of replacing the methane gas with gas mixture and the step of decomposition-replacement of methane hydrate.In accordance with the present invention, the invention is possible use as a technique for recovery of methane gas in the all-weather to induce replacement reaction using a gas mixture when the temperature of the technology applied is low and to induce degradation of solid methane hydrate by mixing gas when the temperature of the region technique is applied is high.Further, the method makes it possible to reduce costs than using conventional methods because the air is collected directly from the NGH reservoirs and compressed and is injected as a mixture with carbon dioxide and, there is no need to transport the infusion another gas. The invention may be widely used in the production of natural gas more effectively.
Abstract:
A mobile apparatus includes a sensing handler and a processing handler. The sensing handler includes a plurality of sensing operators. The sensing operator senses data during a sensing time corresponding to a size of C-FRAME and stops sensing during a skip time. The C-FRAME is a sequence of the sensed data to produce a context monitoring result. The processing handler includes a plurality of processing operators. The processing operator executes the sensed data of the sensing operator in a unit of F-FRAME. The F-FRAME is a sequence of the sensed data to execute a feature extraction operation.