Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. The apparatus identifies first entity and transmits a very low duty cycle signal (LDCS) configuration of the first entity. The apparatus may comprise, e.g., an LPN that is not in a dormant state or a macrocell. The apparatus may receive LDCS information for the first entity. The apparatus may determine the LDCS configuration and transmit the LDCS configuration to the first entity.
Abstract:
Certain aspects of the present disclosure generally relate to wireless communications, and more specifically increasing user capacity through a frame structure which supports enhanced Machine Type Communication (eMTC) UL multi-user multiplexing. For example, a User Equipment (UE) identifies at least one narrowband region within a wider system bandwidth. The UE receives signaling, from a base station, indicating a sub-region of the narrowband region assigned to the UE for transmitting symbols of a physical uplink channel that are multiplexed with symbols transmitted by one or more other UEs in the narrowband region. The UE transmits the physical uplink channel in the assigned sub-region. Similar techniques are also provided that may be applied to DL multi-user multiplexing.
Abstract:
Certain aspects of the present disclosure generally relate to wireless communications and more specifically to a method for machine type communications involving identifying one or more subframes, within at least one radio frame, unavailable for bundled transmissions across multiple subframes and communicating, via at least one narrowband region within a wider system bandwidth, using bundled transmissions across multiple subframes based on the identification.
Abstract:
Certain aspects of the present disclosure generally relate to wireless communications, and more specifically to determining uplink narrowband regions based on downlink resources. An example method generally includes identifying one or more uplink narrowband regions within a wider system bandwidth, based on downlink resources, and communicating using at least one of the identified narrowbands.
Abstract:
Aspects of the present disclosure provide techniques utilizing shared radio frequency spectrum (SRFS) for certain devices, such as machine type communication(s) (MTC) user equipments (UEs) and evolved or enhanced MTC (eMTC) UEs. An exemplary method, performed, for example, by a base station (BS), includes performing a channel clear assessment (CCA) for at least a portion of the SRFS including one or more narrowband regions, and communicating with at least one MTC UE, after performing the CCA, on at least one of the narrowband regions. A second exemplary method, performed, for example, by a MTC UE, generally includes receiving, from a BS, an assignment of resources in a narrowband region of the SRFS band for the MTC UE to use for communicating with the BS, and communicating with the BS on the narrowband region without performing a CCA for the narrowband region. A third exemplary method, performed, for example, by a MTC UE, generally includes performing a CCA for a narrowband region of the SRFS band and communicating with a BS on the narrowband region.
Abstract:
Aspects of the present disclosure provided techniques that may be applied in systems to allow for communication over a control channel utilizing a relatively narrowband (e.g., six physical resource blocks) based search space. An exemplary method, performed, for example, by a machine type communication (MTC) UE, generally includes identifying, within a subframe, a first search space to monitor for a control channel that occupies a first number of physical resource blocks (PRBs) that represents a narrowband within a system bandwidth comprising a plurality of narrowbands and monitoring at least the first search space for the control channel, wherein the control channel comprises broadcast control information.
Abstract:
Certain aspects of the present disclosure generally relate to wireless communications, and more specifically to narrowband retuning for simultaneous transmission and reception (e.g., broadcast-broadcast or broadcast-unicast) in enhanced machine type communications (eMTC). An example method that can be performed by a base station (BS) generally includes transmitting a first type of signal in a first set of narrowband resources for a first duration and transmitting a second type of signal in a second set of narrowband resources for a second duration. A user equipment (UE) can monitoring for the first type of signal in the first set of narrowband resources for the first duration and tune-away to the second set of narrowband resources to monitor for the second type of signal for the second duration.
Abstract:
Certain aspects of the present disclosure relate to methods and apparatus for mitigating resource conflicts between ultra low latency (ULL) and legacy transmissions. A base station may determine a region of a subframe having overlapping resource allocations for a first device of a first type (e.g., ULL device) and a second device of a second type (e.g., legacy device), wherein the first device of the first type has a capability to perform certain procedures with low latency relative to the second device of the second type that lacks the capability. The base station may modulate data from the region of the subframe for transmission to the first and the second devices, using a hierarchical modulation scheme.
Abstract:
Certain aspects of the present disclosure generally relate to wireless communications, and more specifically to random access procedures and/or prioritization of broadcast transmissions in machine type communications (MTC) devices and enhanced MTC (eMTC). An example method generally includes determining a plurality of subframes in which the UE may transmit a bundled random access channel (RACH) message to a base station (BS), determining, within the subframes, at least one narrowband region for transmitting the bundled RACH message, determining a bundling size for the bundled RACH message, the bundling size indicating a number of the plurality of subframes in which the bundled RACH message is transmitted, and transmitting the bundled RACH message in the narrowband region of the plurality of subframes, based at least in part on the determined bundling size.
Abstract:
Certain aspects of the present disclosure provide techniques that may be used for low latency communications. For example, aspects allow a single group acknowledgement to be used to acknowledge a plurality of low latency transmissions. An exemplary method generally includes receiving, from a base station, a plurality of downlink channel transmissions, wherein each of the downlink channel transmissions is sent using a first transmission time interval (TTI) that is reduced relative to a legacy TTI and providing, in a single uplink channel transmission sent using a second TTI that is larger than the first TTI, a group acknowledgement indicating whether or not the downlink channel transmissions were successfully received by a UE.