摘要:
The invention relates to a micromechanical resonator having a bondable resonance body and a method for fabricating a micromechanical resonator for semiconductor components.The invention provides that the resonator (26) is composed successively of a first layer (16) of silicon for coupling the resonator (26) in terms of a circuit, an insulating layer (14) of silicon dioxide, a cylindrical base layer (cylinder 18), and a metal layer (20) completely surrounding the cylinder (18).The method provides that a cylindrical structure (18) (cylinder) is etched (trench etching process) in a base layer (12) of p−-doped silicon (SOI wafer) separated from a layer (16) of silicon by an insulating layer (14), and the cylindrical structure (18) is coated with a metal layer (20).
摘要:
The present invention incorporates triple-mode, mono-block resonators that are tunable. Four novel and unobvious methods of tuning are disclosed. The first tuning method is to mechanically grind areas on three orthogonal faces of the mono-block in order to change the resonant frequencies of the three modes in each block. Another method of tuning frequency is to cut a slot within a face of the resonator. A third method of tuning the mono-block is to tune the resonant frequency of a particular mode by removing small circular areas of the conductive surface from a particular face of the mono-block. The fourth, tuning method is the use of discrete tuning elements, with 3 elements distributed among three orthogonal faces of the mono-block, to affect the necessary change of the resonant frequencies.
摘要:
A method (200) of frequency trimming an electronic device (100) such as a resonator or filter can include the steps of providing (202) an external trimmable portion (10) of a multi-port trim network and selectively removing (204) at least a portion of the external trimmable portion to selectively increase or decrease the frequency of the electronic device. Selectively removing can include selectively removing (206) the portion of the external trimmable portion to selectively increase the frequency by reducing a parallel capacitance of the external trimmable portion or alternatively selectively removing (208) the portion of the external trimmable portion to selectively decrease the frequency by increasing a series inductance of the external trimmable portion. Trimming of the frequency up or down can be done without affecting (210) any main resonating structures of the electronic device and without adding (212) metal to the external trimmable portion.
摘要:
Systems and methods are taught for blocking the propagation of electromagnetic waves in parallel-plate waveguide (PPW) structures. Periodic arrays of resonant vias are used to create broadband high frequency stop bands in the PPW, while permitting DC and low frequency waves to propagate. Particular embodiments include clusters of small vias that effectively function as one large via, thereby increasing stop band bandwidth and maximizing parallel plate capacitance. Cluster vias can be configured to additionally provide a shielded and impedance matched route within the interior area of the cluster through which signal vias can connect transmission lines disposed in planes lying above and below the PPW. Important applications include electromagnetic noise reduction in layered electronic devices such as circuit boards, ceramic modules, and semiconductor chips.
摘要:
Systems and methods are taught for blocking the propagation of electromagnetic waves in parallel-plate waveguide (PPW) structures. Periodic arrays of resonant vias are used to create broadband high frequency stop bands in the PPW, while permitting DC and low frequency waves to propagate. Some embodiments of resonant via arrays are mechanically balanced, which promotes improved manufacturability. Important applications include electromagnetic noise reduction in layered electronic devices such as circuit boards, ceramic modules, and semiconductor chips.
摘要:
A high frequency communication device which can reduce undesired electromagnetic coupling inside and outside a box thereof in which circuit parts constituting a transmitter-receiver circuit are contained.Periodic structures (6) are provided on at least a part of a wall constituting a box (1, 4, 5) so that the periodic structures (6) serve as a filter which has a non-propagating frequency band corresponding a frequency band covering an undesired electromagnetic emission inside the box. Thus, undesired electromagnetic emission energy from any electromagnetic emission source can be confined locally to prevent a possible problem of electromagnetic interference.
摘要:
A magnetostatic wave device including a magnetic garnet film which excites and propagates magnetostatic waves upon receiving electromagnetic waves, a magnetic field generator which applies a magnetic field to the magnetic garnet film, first and second ground conductors opposing each other and sandwiching the magnetic garnet film therebetween, and an RF signal feeder line disposed between the magnetic garnet film and the first ground conductors. The first ground conductor has an opposing surface opposed to one main surface of the magnetic garnet film. The second ground conductor has an opposing surface opposed to the other main surface of the magnetic garnet film. In the device,t.sub.1 .gtoreq.t.sub.R +5 .mu.mt.sub.2 .gtoreq.0 .mu.m, andt.sub.1 +t.sub.2 .ltoreq.500 .mu.m,where t.sub.1 is a distance between the opposing surface of the first ground conductor and the one main surface of the magnetic garnet film, t.sub.2 is a distance between the opposing surface of the second ground conductor and the other opposing surface of the magnetic garnet film and t.sub.R is a thickness of the RF signal feeder line.
摘要:
An MCM including a resonator made using conventional MCM fabrication techniques. The MCM's resonator is constructed with overlapping first and second spiral-shaped regions of metallic material separated by a layer of dielectric material. A via disposed in the layer of dielectric material, couples the spiral-shaped regions of metallic material together, thereby utilizing self winding and internal capacitance to gain resonance at frequencies between 500 MHz to 3GHz. The internal capacitance is increased by controlling the overlap between the first and second spiral-shaped regions of metallic material. On a high-resistivity substrate, the monolithic resonator achieves a Q of at least 19 at approximately 900MHz and at least 24 at approximately 2GHz.
摘要:
A multilayer microelectronic circuit to be directly mounted on a substrate and to be used, for example, as a resonator. The multilayer microelectronic circuit comprises a plurality of dielectric layers and patterned electrodes which are laminated one upon another to form a laminated structure, the dielectric layers and the patterned electrodes forming an electrical circuit. The laminated structure has side surfaces extending along a direction in which the dielectric layers and the patterned electrodes are laminated. An input line is formed at one of the side surfaces and connected with an input section of the electrical circuit. An output line is formed at one of the side surfaces and connected with an output section of the electrical circuit. A grounding line is formed at one of the side surfaces and connected with a grounding section of the electrical circuit. Additionally, a signal line formed at one of the side surfaces, for connecting sections of the electrical circuit. The signal line has an end positioned adjacent a mounting surface at which the multilayer microelectronic circuit is directly mounted on the substrate, in which the end of the signal line is separate from the mounting surface so as to be insulated from electrical contact with the substrate.
摘要:
An inexpensive and reliable thin-film multilayered electrode which is formable on a dielectric substrate such as a ceramic substrate. A thin-film multilayered electrode has thin-film conductors and thin-film dielectrics formed by alternately layering on a dielectric substrate with a predetermined dielectric constant. The dielectric constant for each of the thin-film dielectrics is selected such that the electromagnetic field created in the dielectric substrate and the electromagnetic field created in each of the thin-film dielectrics are substantially in phase with each other when the thin-film multilayered electrode is used at a predetermined frequency, and the film thickness of each of the thin-film dielectrics falls between 0.2 .mu.m and 2 .mu.m; and the film thickness of each of the thin-film conductors, other than a thin-film conductor formed most distant from the dielectric substrate, is thinner than the skin depth at the predetermined frequency.