Abstract:
An actuator includes a solenoid including a coil and a plunger, a switch circuit coupled to the coil, and a control circuit coupled to the switch circuit. The control circuit is configured to receive a feedback signal representative of a plunger position. The control circuit is also configured to provide power to the solenoid via the switch circuit and reduce power to the solenoid via the switch circuit in response to the feedback signal being representative of the plunger being in a full travel position.
Abstract:
A linear electrical machine including a frame with a level reference plane, an array of electromagnets connected to the frame and coupled to an alternating current power source energizing each electromagnet, at least one reaction platen of paramagnetic, diamagnetic, or non-magnetic conductive material disposed to cooperate with the electromagnets of the array of electromagnets so that excitation of the electromagnets with alternating current generates levitation and propulsion forces against the reaction platen that controllably levitate and propel the reaction platen along at least one drive line, in a controlled attitude relative to the drive plane, and a controller operably coupled to the array of electromagnets and the alternating current power source and configured so as to sequentially excite the electromagnets with multiphase alternating current with a predetermined excitation characteristic so that each reaction platen is levitated and propelled with up to six degrees of freedom.
Abstract:
An impact actuator with 2-degree of freedom, which may generate an impact stimulation in any direction on the plane, includes a body having a magnetic substance that is movable therein, one upper solenoid attached to an upper portion of the body, and three or more lower solenoids attached to a lower portion of the body, wherein the upper solenoid and the three or more lower solenoids are independently supplied with AC power from a power supply, respectively.
Abstract:
A solenoid coil discharging circuit includes a rectifier, transistor, and diode. The rectifier is coupled to an alternating current signal, and provides a rectified signal in response to being coupled to the alternating current signal. The transistor is coupled to the rectifier circuit, and biased in on in response to the alternating current signal being coupled to the rectifier, thereby enabling coupling of the rectified signal to a solenoid coil. The diode is coupled to the rectifier, and discharges current from the solenoid coil in response to the alternating current signal being de-coupled from the rectifier. A method of discharging a solenoid coil includes rectifying an alternating current signal to provide a rectified signal, biasing a transistor on in response to the alternating current signal being rectified, thereby enabling coupling of the rectified signal to the solenoid coil through the transistor, and discharging current from the solenoid coil through the diode in response to discontinuing rectification of the alternating current signal.
Abstract:
Disclosed is an electromagnetic vibratory pump, comprising a first C-shaped winding and a first magnet. The first C-shaped winding comprises a first coil and a first electromagnetizable member. The first coil covers the first electromagnetizable member, which comprises a first main body, a first leg and a second leg. The legs are connected to the first main body, and the distance between the legs is reduced from a first width to a second width from the first main body. The first magnet swings in a circular tangential direction. A point of tangency of the circular tangential direction is configured apart from the first leg and the second leg respectively by a first minimum distance. The first minimum distance is less than a half of the second width. The first magnet is driven by the first magnetic line of force to move in the first circular tangential direction, and the first magnet is driven by the second magnetic line of force to move in the second circular tangential direction.
Abstract:
Provided is an apparatus for enhancing power efficiency, the apparatus including a magnetic substance configured to generate a magnetic field, a conductive wire configured to pass the magnetic field, and of which one end is electrically connected to a power line to which alternating current (AC) is applied, and a controller connected to another end of the conductive wire, and configured to apply, to the conductive wire, and to prevent a sudden overcurrent a voltage surge from flowing into an electric device. The conductive wire includes a conductive plate, and the conductive plate is disposed in a space in which the magnetic field is generated to be separate from the magnetic substance, and a first width of the conductive plate can be the same as or greater than a second width of the conductive wire.
Abstract:
Magnetic field manipulation devices and magnetic actuators are disclosed. In one embodiment, a magnetic field manipulation device includes an iron base substrate having a surface, and at least four electrically conductive loops embedded in the surface of the iron substrate. The at least four electrically conductive loops are electrically coupled to one another, and are arranged in the surface of the iron substrate such that the magnetic field manipulation device diverges magnetic flux lines of a magnetic field generated by a magnetic field source positioned proximate the magnetic field manipulation device. In another embodiment, the at least four electrically conductive loops are electrically isolated such that the magnetic field manipulation device converges magnetic flux lines of a magnetic field generated by a magnetic field source positioned proximate the magnetic field manipulation device.
Abstract:
The magnetic force between the electromagnet and plunger of a magnetic actuator, the electromagnet including a coil generating magnetic flux when the coil is energized, can be increased by locating a near field plate on the electromagnet. The near field plate has a spatially modulated surface reactance configured to focus the magnetic flux within a region of the plunger, such as the central portion of an end portion of the plunger proximate the electromagnet, so as to increase the magnetic force between the electromagnet and plunger. Examples also include permanent magnet based actuators and the use of other magnetic field focusing devices.
Abstract:
An electromagnetic actuator (1) with an armature (3) mounted so that the armature can be moved by virtue of a bearing arrangement (6A, 6B) and an electric coil (4) is provided for moving the armature (3). A magnetostrictive element (8) is provided, by which relative movement between the armature (3) and at least part of the bearing arrangement (6A, 6B) is produced.
Abstract:
An actuator arrangement for use in a fuel injector of an internal combustion engine includes an inner core (30) comprising a plurality of laminates (30a) and a first outer pole (32) for receiving at least a part of the inner core (30), wherein the inner core (30) and the outer pole (32) together define a first volume (46) for receiving a first electromagnetic winding. An injector is provided in which the actuator arrangement controls a valve arrangement, either a spill valve or a nozzle control valve, or both, so as to control injection by the injector.