Abstract:
In detecting the time at which a rotating object passes a given angular position, a value range of an angular position sensor output signal which varies relatively rapidly with angular position acts as a trip threshold that, when exceeded, indicates the object has achieved the detected angular position. A relatively rapid change as a function of angular position is determined by reference to the functional dependence of the detection signal level on the angular position of the object. Assuming the sensor signal varies sinusoidally with the object's angular position, the ranges in which the level of the sensor output signal varies rapidly with angular position lie in the vicinity of the angular positions at which the sensor output signal crosses its own mean value, the threshold value being chosen near this mean value.
Abstract:
Red, green and white colored lights are emitted from navigation orientation indicating light emitting devices mounted within a helicopter rotor blade near its tip. The light emissions from such devices are under control to respectively indicate passage of the rotor blade through limited arcuate portions of the travel path of the rotor blade end tip. Operational control over the light emitting devices is effected by data processing of outputs from air-speed responsive sensors on the blade end tip.
Abstract:
Provided is a method of generating a magnetic field map including obtaining magnetic field information, the magnetic field information being information on a magnetic field affecting a mobile body, for each position of the mobile body, and building a magnetic field map based on the magnetic field information for each position of the mobile body. The pose of a mobile body can be statistically checked by the probability obtained using the difference between the magnetic field information observed from the magnetic field map and the actually measured magnetic field information. Although the pose of the mobile body is estimated using a camera that is sensitive to an illumination state where the mobile body is placed, the pose of the mobile body can be relatively accurately checked using the magnetic field map obtained in a situation regardless of illumination, with being less affected by the illumination state where the mobile body is placed. Thus, the pose of the mobile body can be checked with reliability.
Abstract:
The present invention intends to provide a method for accurately and quickly estimating a three-dimensional position of a radio transmitter. The present invention provides a method for estimating a three-dimensional position of a radio transmitter. The method includes: a step of moving a mobile object provided with a radio receiver in a workspace to a position where the radio receiver receives a radio signal from a radio transmitter, a step of storing a receiving state of the radio signal as the mobile object performs a predetermined operation when the radio receiver receives the radio signal, and a step of determining a three-dimensional position of the radio transmitter based on the receiving state.
Abstract:
The present invention relates to computing reachable areas given a first point. More specifically, the present invention relates to the computation of an intersection between a first surface and a second surface for determining a set of points that are reachable from a first point. Using the present invention, a user can determine either (1) a locus of target sites that can be struck by a ballistic projectile from a given launch site, or (2) a locus of launch sites that can be used to hit a given target site. The disclosed system and method employs graphics hardware to determine an intersection between a first surface defined by trajectory paths, and a second surface defined by terrain.
Abstract:
A system (400, 500) and method (800) of personal inertial navigation measurements can include measuring (802) an angle, measuring (804) an angular velocity independent of an angle measurement, measuring (806) an angular acceleration independent of the angle measurement and independent of an angular velocity measurement, and combining (808) the angle measurement, the angular velocity measurement, and an angular acceleration to provide an angled output. The angle measurement can be measured using a compass or magnetic field, the angular velocity can be measured using a gyroscope (such as a MEMS gyroscope), and the angular acceleration measurement can be measured using an angular accelerometer (such as a molecular electronic transfer device having a magneto hydrodynamic effect device). The method can further include suppressing (810) noise caused by the angle measurement by using a sample and hold circuit (504) controlled by a higher ordered component to suppress noise from a lower ordered component.
Abstract:
A self-balancing, no-spin magnetic compass. A described embodiment includes a compass card assembly, a retainer assembly, a pivot assembly, a gimbal assembly, a cup, and a dome. The compass card assembly includes an air chamber which provides buoyancy. The retainer assembly functions with the compass card assembly to retain magnets. The pivot assembly snap-fits into the retaining assembly and contacts the compass card assembly to allow the compass card assembly to pivot about the pivot assembly. The pivot assembly also snap-fits into the gimbal assembly. The base of the pivot assembly is positioned into the cup and the entire compass is secured into the dome, that is filled with a fluid.
Abstract:
Various implementations are disclosed for self-contained, non-intrusive data collection in ammunition. In some implementations, a gun is loaded with a non-explosive, non-firing round of ammunition containing a data acquisition system. Such a data-collecting round of ammunition may be loaded into the gun according to the same procedures as live rounds of ammunition, and, in particular, may be loaded into a firing position immediately after a preceding live round has been fired. In this way, the data-collecting round of ammunition is able to experience temperature or other conditions that are experienced essentially identically by live rounds. After collecting related data while in the firing position, the data-collecting round may be removed from the gun, for analysis of the data for, for example, development of hot gun misfire safety procedures.
Abstract:
A method serves to determine the 3D coordinates of an object. The 3D coordinates of a partial surface (6) of the object are determined by a 3D measuring device (3), which includes one or more detectors (4) and whose position is determined by a tracking system. The 3D coordinates of an adjacent partial surface (7) of the object are determined by the 3D measuring device (3). The 3D coordinates of an overlap region of the adjacent partial surfaces (6, 7) are put together by a matching method. In doing so, an error function is determined and minimized iteratively. Furthermore, the error function of a detector (4) of the 3D measuring device (3) is determined.
Abstract:
Method and system for measuring a relative position and orientation of range cameras using a movement of an object within a scene. In general, the method and system determine the relative pose between two cameras by measuring a path the movement of the object makes within a scene and calculating transformation parameters based on these measurements. These transformation parameters are used to determine the relative position of each camera with respect to a base camera. The system and method include other novel features, such as a data synchronization feature that uses a time offset between cameras to obtain the transformation parameters, and a technique that improves the robustness and accuracy of solving for the transformation parameters, and an interpolation process that interpolates between sampled points if there is no data at a particular instant in time.