Abstract:
Disclosed herein is an improved method for reversed flow through a self-adjustable (autonomous) valve or flow control device (2), comprising the step of providing an overpressure on the side of the valve (2) opposite of the side of the inlet (10) exceeding a predetermined biasing force of the resilient member (24) causing lifting of the inner body part (4a) within the outer body part (4b) against said biasing force from a first position of fluid flow between an inner and an outer side of the valve (2) via the flow path (11) and to a second position of reversed fluid flow between said inner and outer side through the second flow path (25). An improved self-adjustable (autonomous) valve or flow control device (2) and use of said improved valve or flow control device are also disclosed.
Abstract:
A valve (10) comprising a housing (12) formed with a downstream port (14) and an upstream port (28), with an axially displaceable plunger (34) biased into sealing engagement of a major flow path (78) extending between the downstream port (14) and the upstream port (28) for admitting flow only in the upstream direction. The plunger is formed with a normally closed minor flow path (86) for admitting flow only in a downstream direction.
Abstract:
An air vent mechanism includes a composite type air vent valve having a check valve for controlling a pressure in a fuel tank and a cut valve for discharging vapor in the fuel tank and preventing fuel from leaking. The check valve and the cut valve are connected through a communicating path. A tank side connecting portion communicates with the communicating path, and an atmosphere side connecting portion communicates with an atmosphere side port of the check valve portion.
Abstract:
A damper valve for a hydraulic power steering device is disposed in a hydraulic oil circuit connecting an oil passage changing-over valve in a gear box and left and right oil chambers of a power cylinder. It is provided with a piston valve which is opened by through-flow of hydraulic oil returned back to the oil passage changing-over valve from either one of the left and right chambers of the power cylinder, and a check valve which is disposed in a valve body of the piston valve and which allows only hydraulic oil supplied from the oil passage changing-over valve to either one of the left and right chambers of the power cylinder to flow through the check valve. The piston valve is structured such that a throttle oil passage is formed by through flow of the returned hydraulic oil having an oil pressure of a predetermined value or less, and a fully opened oil passage is formed by through flow of the returned hydraulic oil having an oil pressure of more than the predetermined value. Oil passages for the returned-back hydraulic oil are formed in the valve body of the piston valve.
Abstract:
A combination valve for relieving pressure and vacuum conditions in a pressurizable tank includes an elongated rod with a spring seat thereon, a body member sealingly securable to the tank, a cover member secured for axial movement with the rod, a spring mounted between the body member and rod so as to yieldably urge the rod and cover member toward the body member, and an O-ring rollably disposed in a groove in the body member. The width of the O-ring is substantially less than the width of the groove such that the O-ring is rollable within the groove between the body member and the cover member. A seal member mounts on the rod and extends between the cavity and the cover member so as to normally sealingly engage the cover member and cover the vent. In a vacuum venting mode, the flexible seal member is suctioned away from the cover member and the vents therein in response to a predetermined vacuum present in the tank. The air can then be drawn into the tank through the vent. In a pressure relieving mode, the pressure in the tank overcomes the force of the spring so as to move the cover member upwardly with respect to the body member. This relative movement causes the O-ring to roll upwardly and eventually stop on an upper shoulder of the groove. Thereafter, movement of the cover member relative to the body member causes the cover member to slide past the O-ring and open an annular pressure relieving passage between the cover member and the O-ring.
Abstract:
In a master cylinder of the quick-fill type, communication between the quick-fill chamber (8) and the reservoir (13) is controlled by a valve assembly comprising a pressure responsive valve which opens when the pressure in the quick-fill chamber (8) reaches a predetermined level, and a one-way valve (20, 22) which allows free flow of fluid from the reservoir to the quick-fill chamber. The valve member (20) and seat (15) of the pressure responsive valve have confronting surfaces which define between them, when the valve is closed, a restrictive passage for pressure equalization purposes, and any dirt becoming trapped between the surfaces is washed away by the fluid flow on opening of the valve.
Abstract:
A minimum pressure retention valve which is adapted to be connected in the air circuit of a vehicle load leveler system, and wherein the minimum set pressure is easily and reliably adjusted and the valve permits rapid pressurization of the load leveler system while retaining the set pressure when the air supply is off.
Abstract:
A filter assembly including a housing and a filter element which includes a bypass/reverse flow valve coaxially disposed within the housing with the filter element and includes a central opening therethrough coaxially aligned with the opening in the filter element through which filtered fluid passes. In the forward flow direction a bypass valve opens responsive to a predetermined pressure differential appearing across the filter element to permit unfiltered fluid to flow from the source to the load without passing through the filter element. In the reverse flow direction, from the load to the source, a check valve closes and applied full load pressure to the reverse flow valve causing it to open with a second differential pressure which is lower than the bypass differential pressure to thereby permit free flow of fluid from the load to the source without passing through the filter.