摘要:
A method of monitoring an analogue signal output from a sensor comprising comparing the amplitude of the analogue signal to a first high and low threshold, setting a primary monitoring signal to a first value when the amplitude of the analogue signal exceeds the first high threshold, setting the primary monitoring signal to a second value when the amplitude of the analogue signal decreases below the first low threshold, comparing the amplitude of the analogue signal to a second high and low threshold, setting a secondary monitoring signal to a first value when the amplitude of the analogue signal exceeds the second high threshold, setting the secondary monitoring signal to a second value when the amplitude of the analogue signal decreases below the second low threshold, comparing the primary and secondary monitoring signals and determining from the comparison whether an error exists with the monitoring of the analogue signal.
摘要:
A method for measuring a period of time between a first event and a second event via a hardware counter 2 and of a software counter 3. A digital counter 1 using such a method is also described.
摘要:
A digital period divider has a first counter with R least significant bits (LSB) and P most significant bits (MSB) having a count input and a reset input, wherein the count input receives a first clock signal and the reset input receives a second clock signal; a latch having P bits and being coupled with the P bits of the first counter; a second counter having P bits and a count input and a reset input, wherein the count input receives the first clock signal; and a first comparator operable to compare the P bits of the latch with the P bits of the second counter and generating an output signal, wherein the output signal is also fed to the reset input of the second counter.
摘要:
The timing generation circuit includes a binary counter constituted of three T-flip-flop circuits, and a binary state at reset of the binary counter is also used at system reset and in generation of the output pulses, to generate eight output pulses having different timings from eight binary states generated by the binary counter and including the state at the reset. At the system reset, a reset signal to the binary counter is delayed, so that an output of a decoder circuit at the reset of the binary counter is delayed. Therefore, the output of the decoder circuit is masked with a fast reset signal, so that the output of the decoder circuit at the system reset can be prevented from being reflected in an output terminal.
摘要:
An integrated circuit includes a first variable divider circuit configured to receive a clock signal and to apply a lower range of integer division factors thereto responsive to a first control input to generate a first divided clock signal and a second variable divider circuit configured to receive the clock signal and to apply an upper range of integer division factors thereto responsive to a second control input to generate a second divided clock signal. The integrated circuit further includes a multiplexer circuit configured to selectively pass the first and second divided clock signals responsive to a third control input.
摘要:
Various embodiments of a flip-flop and a frequency dividing circuit are provided. In one aspect, a flip-flop includes an input stage and a latch stage. The input stage is capable of converting an input signal to an output signal under the control of a first clock signal and a second clock signal. The latch stage is capable of latching the output signal under the control of a third clock signal and a fourth clock signal. The first clock signal, the second clock signal, the third clock signal and the fourth clock signal have different phases.
摘要:
A method for dividing a plurality of multiphase signals comprising performing resetable divider stages to the plurality of multiphase signals forming a plurality of divided multiphase signals having a monotonic increasing phase with equal spacing and an ideal duty cycle of 50% through a plurality of resetable dividers, wherein the plurality of divided multiphase signals have no phase ambiguity; and producing a plurality of periodic reset signals to the plurality of resetable dividers to enable the plurality of resetable dividers to divide the plurality of multiphase signals in a timely correct sequence to form the divided multiphase signal through a reset signal generator, the plurality of periodic reset signals being produced by a combinational network of the reset signal generator, the combination network is configured for generating a number of pulses based on the plurality of multiphase signals and performing a plurality of decimation stages and wherein the periodic reset signals are generated solely in response to the plurality of multiphase signals.
摘要:
A M by N bit synchronous counter for use in advanced applications is provided. The M by N bit synchronous counter comprises an M by N register configured to receive and store data corresponding to at least one word integrated with a N bit counter configured to sequentially count out a selected word of data from the M by N register. The present design replaces a single counter latch circuit with a plurality or stack of selectable latches and employs combined load/store logic and counter controls.
摘要:
A M by N bit synchronous counter for use in advanced applications is provided. The M by N bit synchronous counter comprises an M by N register configured to receive and store data corresponding to at least one word integrated with a N bit counter configured to sequentially count out a selected word of data from the M by N register. The present design replaces a single counter latch circuit with a plurality or stack of selectable latches and employs combined load/store logic and counter controls.
摘要:
A digital frequency synthesizer (DFS) circuit adds little additional delay on the clock path. True and complement versions of an input clock signal are provided to a first and second passgates, respectively. Under the direction of a control circuit, the passgates pass selected rising edges of the true clock signal, and selected falling edges of the complement clock signal, to an output clock terminal of the DFS circuit. When neither the true nor the complement clock signal is passed, a keeper circuit retains the value already present at the output clock terminal. In some embodiments, both passgates can be disabled and a ground or power high signal can be applied to the output terminal. Other embodiments include PLDs in which the DFS circuits are employed to allow individual clock control for each programmable logic block.