Abstract:
A multi-pass optical cell with an actuator for actuating a reflective surface is provided. In one preferred embodiment, an apparatus is provided comprising a first reflective surface, a second reflective surface, and a support structure supporting the first and second reflective surfaces. The support structure positions the first and second reflective surfaces to create an optical cell. The apparatus also comprises a source and a detector, which are positioned such that light emitted from the source is reflected in the optical cell at least one time between the first and second reflective surfaces before reaching the detector. The apparatus further comprises an actuator coupled with and operative to actuate the first reflective surface. In some embodiments, the actuator rotates the first reflective surface. Also, in some embodiments, the multi-pass optical cell is an open path multi-pass optical cell, while, in other embodiments, the multi-pass optical cell is a closed path multi-pass optical cell.
Abstract:
A sufficiently large light detection value can be obtained to determine a concentration of a target component in a desired section, without using a laser emitter of a high laser intensity or a large light collector. By changing an orientation of a laser emitter 3 about a horizontal axis or a height of the laser emitter 3, a laser irradiation position on a ground or water surface 5 is switched between a first irradiation position 5a and a second irradiation position 5b. A photodetector 9 detects first scattered light resulting from scattering of first laser beam at the first irradiation position 5a, second scattered light resulting from scattering of second laser beam at the first irradiation position 5a, third scattered light resulting from scattering of the first laser beam at the second irradiation position 5b, and fourth scattered light resulting from scattering of the second laser beam at the second irradiation position 5b. A concentration calculator 11 calculates a concentration of a target component between the first irradiation position 5a and the second irradiation position 5b, based on detection values of the first, second, third, and fourth scattered light obtained by the photodetector 9.
Abstract:
A long optical path gas monitor is open-typed or close-typed. The monitor includes an optical generation part and a signal processing part. Said optical generation part comprises an emitter, a receiver and multi-group concave mirrors or prisms used to form enough optical path between the emitter and the receiver. Said signal processing part includes an optical fiber (21), a spectrometer (22), a scanner (23), an optoelectronic detector (24) and a computer (25), which are connected sequentially. The input end of the optical fiber (21) is connected to the receiver.
Abstract:
A system including at least one laser device extending a beam through an in-situ non-restrictive flow path of the gas mixture; and a measurer coupled to each laser device for obtaining a plurality of dynamic measurements over time of at least one species in the gas mixture.
Abstract:
The present invention relates to a method for detecting N gases, each having a corresponding spectral signature. The method comprises determining, on the basis of a Principal-Component Analysis of the spectral signatures of the N gases, M wavelengths, on the basis of which said spectral signatures can be represented. Furthermore, the method comprises emitting, for each of the M wavelengths determined, a corresponding electromagnetic radiation having said wavelength. The method also comprises acquiring, for each of the M wavelengths determined, a corresponding back-scattered electromagnetic radiation having said wavelength. Finally, the method comprises detecting and identifying one of the N gases on the basis of the corresponding spectral signature and of at least one electromagnetic radiation acquired.
Abstract:
A gas-measuring arrangement (1) with an open optical measuring section (7) is formed by a measuring device (5) with an array of lenses (10, 12, 19, 24), a phase mask (22), an optical path mirror (16) positioned obliquely, and a reflecting mirror (3) located outside the measuring device (5) at the end of the open measuring section (7). The light is decoupled to a detector (26) via a phase mask (22) and the optical path mirror (16). The phase mask (22) diverges a light intensity spot and the light intensity ring is decoupled by an obliquely positioned optical path mirror (16) towards a detector (26).
Abstract:
Broadband light, for example, from a Fabry-Perot quantum cascade laser, is shone onto a sample, and spectral data concerning the broadband light reflected from the sample is collected. The spectral data is analyzed to determine information about one or more substances in the sample. For example, if the sample contains micro-organisms, such as bacteria or fungus, the biological classification(s) (e.g., species) of the micro-organisms can be determined from the spectral data. As another example, if the sample contains virus, the biological classification(s) (e.g., species) of the virus(es) can be determined from the spectral data. As yet another example, if the sample contains particles, size, location and velocity can be determined from the spectral data.
Abstract:
A system and method for detecting airborne agents. The system includes a semiconductor ultraviolet optical source configured to emit an ultraviolet light, a controller configured to generate a pseudo-random code for emission of the ultraviolet light modulated at the pseudo-random code, a telescope configured to focus the ultraviolet light to a distance from the source and to receive elastically backscattered signals and fluorescence signals from the distance, and a sensor configured to detect the elastically backscattered and fluorescence signals. The method generates a pseudo-random code and emits at least one wavelength of ultraviolet light modulated at the pseudo-random code, transmits the modulated ultraviolet light pulses to a distance from the source, receives elastically backscattered signals and fluorescence signals from the distance, and detects the elastically backscattered and fluorescence signals.
Abstract:
An imaging system (10) for imaging an emitting gas (12) includes an imager (16) and a laser source (20). The imager (16) captures an image (18) of light in the mid-infrared (MIR) range. The laser source (20) includes a semiconductor laser (334) that directly emits an output beam (26) that is in the MIR range. The output beam (26) may be adapted to backscatter near and/or be absorbed by the emitting gas (12). Thus, when an emitting gas (12) is present, the gas (12) may absorb and attenuate the backscattered light. As a result thereof, a shadow or contrast (18A) corresponding to the emitting gas (12) may be visible in the image (18) that is captured by the imager (16).
Abstract:
Methods, systems, and computer program products for the fenceline monitoring of air contaminants. More particularly, methods, systems, and computer program products for correlating temporal variations between simultaneous measurements of at least one point monitor and an optical remote sensing (ORS) monitor to estimate the peak concentration of one or more air contaminants along a line of measurement, e.g., a fenceline.