Abstract:
To enable measurement over a wide dynamic range from weak light quantity to strong light quantity in a light quantity detection device for detecting the light quantity, a detection signal from a photon counting light detector is A/D converted. When the A/D converted detection signal has a preset threshold value or more, the detection signal is transmitted as it is to a number-of-photons calculation circuit in a subsequent stage, and when the detection signal has the threshold value or less, threshold value processing for transmitting a preset reference value to the subsequent stage is performed. In the number-of-photons calculation circuit, the number of photons or the light quantity incident on the photon counting light detector is acquired from the dimension of an acquired detection signal waveform until the light quantity measurement ends.
Abstract:
The present teachings provide for systems, and components thereof, for detecting and/or analyzing light. These systems can include, among others, optical reference standards utilizing luminophores, such as nanocrystals, for calibrating, validating, and/or monitoring light-detection systems, before, during, and/or after sample analysis.
Abstract:
A method of determining lighting contributions of elements of a lighting component includes obtaining optical data representative of light output of the lighting component. Relative intensity data may be calculated from the optical data, and may indicate intensity differences in the light output of the lighting component as compared to that of a reference component. An optical property of an element of the lighting component is determined based on a comparison of the optical data with that of the reference component, where the reference component includes at least one reference element. Related systems and apparatus are also discussed.
Abstract:
A uniform light generating system for testing an image-sensing device includes a light-generating unit, a light-transmitting unit, a light-diffusing unit, and a lens unit. The light-generating unit has a substrate and a plurality of light-emitting elements electrically disposed on the substrate. The light-transmitting unit has one side communicated with the light-generating unit for receiving and uniformizing light beams projected from the light-emitting elements. The light-diffusing unit has one side disposed on the other side of the light-transmitting unit for receiving and diffusing the light beams that have passed through the light-transmitting unit. The lens unit is disposed on the other side of the light-diffusing unit for transmitting the light beams that have passed through the light-diffusing unit to the image-sensing device.
Abstract:
A display device is provided including a photosensor PS that detects the ambient light amount of a display area, a comparator that compares the output of the photosensor PS with a predetermined reference value, and a backlight controller that controls the amount of light supplied to the display area depending on a comparison result by the comparator, a switch SW for controlling application of a precharge potential is connected to a metal that exists near the light-receiving part of the photosensor PS with the intermediary of an insulating film. The embodiment apparently decreases the parasitic capacitance of the detection element to thereby suppress the influence of the parasitic capacitance of the detection element itself at the time of light amount detection.
Abstract:
A uniform light generating system for testing an image-sensing device includes a light-generating unit, a light-transmitting unit, a light-diffusing unit, and a lens unit. The light-generating unit has a substrate and a plurality of light-emitting elements electrically disposed on the substrate. The light-transmitting unit has one side communicated with the light-generating unit for receiving and uniformizing light beams projected from the light-emitting elements. The light-diffusing unit has one side disposed on the other side of the light-transmitting unit for receiving and diffusing the light beams that have passed through the light-transmitting unit. The lens unit is disposed on the other side of the light-diffusing unit for transmitting the light beams that have passed through the light-diffusing unit to the image-sensing device.
Abstract:
A sensor device according to the present invention has a detection mode for detecting an object W, a first setting mode for changing the output duration of an output signal, and a second setting mode for changing a light-emission period of light emitted to the object W. These modes are switchable by a mode selector switch 12. If a rotary control knob 15 is operated in the detection mode, a CPU 30 changes a setting of a threshold value in response to the operation of the rotary control knob 15 and displays the changed setting of the threshold value on a digital indicator 20. This makes it possible to accurately change settings through relatively simple operations. The rate of change may correspond to the speed of operation of the knob.
Abstract:
A sensor device according to the present invention has a detection mode for detecting an object W, a first setting mode for changing the output duration of an output signal, and a second setting mode for changing a light-emission period of light emitted to the object W. These modes are switchable by a mode selector switch 12. If a rotary control knob 15 is operated in the detection mode, a CPU 30 changes a setting of a threshold value in response to the operation of the rotary control knob 15 and displays the changed setting of the threshold value on a digital indicator 20. This makes it possible to accurately change settings through relatively simple operations. The rate of change may correspond to the speed of operation of the knob.
Abstract:
An automatic light measuring device for an image pickup device includes a pair of line sensors suitable for an automatic focusing adjustment and disposed on a semiconductor chip at positions spaced apart by a predetermined distances, an integration time controller for generating an integration control signal for controlling the charge accumulation by incident light by detecting the amount of charges accumulated in the line sensors, a first exposure amount detector for calculating the intensity of incident light from the integration control signal, a second exposure amount detector inclusive of photoelectric conversion elements formed on the semiconductor chip, for detecting the amount of incident light, a pair of lenses mounted above the pair of line sensors for focusing the image of substantially the same subject within the central area of the field of view, and an optical system for applying light within the area broader than the central area of the field of view to the surface of the semiconductor chip inclusive of the photoelectric conversion elements. The photoelectric conversion elements are disposed between the pair of line sensors. The optical system may be made of an acrylic rod, light focusing fibers, retrofocus lens, or the like.