Abstract:
An apparatus and method for simultaneously coating and measuring a part including a part support, a sprayer, a part measurer including a digital camera and a display device, all of which are positioned adjacent to the part support. The sprayer applies a coating to a section of the part while the part measurer continuously measures at least two dimensions of the section. The digital camera takes at least one picture of the entire section of the part while the part is being coated and enables a user to accurately determine the cross section of the part to the optimum finished part configuration and size and also detect defects, blemishes or coating irregularities formed on the section. The apparatus and method of the present invention significantly reduces the margin of error related to the application of coatings to parts, the number of defective parts and increases the overall efficiency.
Abstract:
The invention relates to a method to determine the volume of small, spherical moving objects in which the objects move through the optical path of a photo electric sensor that comprises at least one light beam transmitter and one light beam receiver, and the change in the light intensity at the light beam receiver caused by objects passing through the optical path is registered and converted into an electrical measurement signal by means of an evaluation unit. The invention is distinguished by the fact that before a measurement process, the amplitude of the electric measurement signal is calibrated to a previously determined average standard volume of the objects and during the measurement process, the volume of each measured object is determined using the change in amplitude of the measurement signal.
Abstract:
Provided is a machine for inspecting ferrules of an optical connector and a method thereof. A fixture arranges the ferrules on a rectangular system to inspect the ferrules. A robot centers first ferrule on a optical system and focuses the first ferrule on the optical system. The optical system includes two cameras for photographing inside diameter image data and outside diameter image data of the ferrule. While the robot moves sequentially the optical system and remaining ferrules, all the inside and outside diameter image data of the ferrules are in sequence obtained by the optical system. Each inside and outside diameter and eccentricity of the ferrules are calculated by the obtained inside and outside diameter image data via a computer program.
Abstract:
A non-contact gauging system and method profiles a workpiece to accurately determine cylindrical surface profiles. The system includes a sensor head for performing reflected light measurements. The sensor head couples to a sensor arm that is movable in longitudinal, lateral, and transverse directions. A computer controls operation of the sensor head and arm to perform various proximity measurements of the workpiece. Proximity measurements are made along at least three parallel, lateral tracks that extend along a longitudinal length of the workpiece surface. The sensor head takes proximity measurements as it is moved continuously along each lateral track. The computer determines the diameters of the workpiece along the longitudinal length based on the proximity measurements and generates a profile.
Abstract:
An upper stem diameter measurement (“USDM”) and basal area determination device for timber cruising operations incorporates a viewing window in which are projected variable, visual brackets for manual alignment by the user, or automatic setting under processor section control, with the left and right sides of a target tree stem or trunk. The device further includes a built-in inclinometer such that computations of height and stem diameter can be automatically adjusted depending on the user's line of sight with respect to a horizontal plane. In a preferred embodiment, a user actuatable keypad is provided for inputting data, such as a desired operational mode, a specified basal area factor and the like, a user viewable display as well as control buttons for adjusting the visual brackets and indicating an acceptance of various of the device parameters and operational characteristics.
Abstract:
A calibration artifact and a method of calibrating a machine vision measurement system. The calibration artifact includes a substrate and a number of concentric rings on one surface of the substrate. Each ring is of a different pre-defined size. The change in the size of any two adjacent rings is different than the change in size of any other two adjacent rings.
Abstract:
An automatic system for illuminating, inspecting and measuring stents and other precision cut tubes and components made of a: a linear array electronic camera with a lens, a light source to provide necessary illumination to create an image on said linear array camera, mandrel onto which the tube is mounted during inspection, a rotary stage for rotating the mandrel, and a computer based electronic imaging system that creates a line-by-line image of stent as it rotates under said camera.
Abstract:
An optical waveguide grating if formed in a waveguide of nominally uniform diameter. A grating characteristic is varied at positions along the grating in a substantially inverse relationship to the diameter of the waveguide at those positions.
Abstract:
A collimator lens 13 converts a light transmitted from a light source 11 into an almost parallel light. A light receiving lens 14 receives the almost parallel light including a shadow 24 of a measurement object 23. A one-dimensional image sensor 17 receives a light passing through a diaphragm 15. A two-dimensional image sensor 19 receives a light split by a beam splitter 16 through a second diaphragm 18. A signal processing section 20 obtains an outside dimension and a monitor image of a measured portion of the measurement object 23 by processing electric signals sent respectively from the image sensors 17and 19. A display section 21 displays the outside dimension and the monitor image of the measured portion of the measurement object 23.
Abstract:
An apparatus (10) and method is provided for generating a 360.degree. view of a surface area of a three-dimensional object, such as a wire or cable, and for inspecting the surface area for flaws or imperfections. A receiving lens (12) defines an optical axis (14) extending through the object, and an origin (0) located on the optical axis within the object and spaced a predetermined distance (S) from the receiving lens (12), for generating a direct image of a front surface section of the object. A first mirror (16) is spaced a first predetermined distance (L1) from the origin (0) on another side of the object relative to the receiving lens (12) for generating a first mirror image of a first rear surface section of the object. A second mirror (18) is spaced a second predetermined distance (L2) from the origin (0) on another side of the object relative to the receiving lens (12), and on another side of the optical axis (14) relative to the first mirror, for generating a second mirror image of a second rear surface section of the object. The first and second mirror images are each defined in part by a first and second central ray (18, 22), respectively, and each central ray forms an angle of incidence (.theta.1, .theta.2) on the respective mirror. The first and second predetermined distances (L1, L2) and the angles of incidence (.theta.1, .theta.2) of the mirrors are each selected to simultaneously generate at least three spatially distinct, non-vignetting images forming a 360.degree. view of the surface area.