Abstract:
Some embodiments include methods for treating surfaces. Beads and/or other insolubles may be dispersed within a liquid carrier to form a dispersion. A transfer layer may be formed across a surface. The dispersion may be directed toward the transfer layer, and the insolubles may impact the transfer layer. The impacting may generate force in the transfer layer, and such force may be transferred through the transfer layer to the surface. The surface may be a surface of a semiconductor substrate, and the force may be utilized to sweep contaminants from the semiconductor substrate surface. The transfer layer may be a liquid, and in some embodiments may be a cleaning solution.
Abstract:
Apparatus and methods of fabricating an interconnect in a dielectric material, such as by a damascene or dual damascene processes. In specific, with the use of a barrier layer, such as to contain copper-containing materials used in the fabrication of the interconnect, a slurry jet is used to remove the barrier layer without significantly damaging underlying dielectric material. Such a process is particularly useful when low-k dielectrics are used as the dielectric material, as low-k dielectrics can be easily damaged by known barrier layer removal techniques.
Abstract:
A CVD-coated cutting tool insert with improved toughness properties having the ability to withstand high temperatures without sacrificing edge line security is disclosed. The insert coating comprises a TiCxNy-layer with a low tensile stress level of 50-500 MPa and an α-Al2O3-layer with a high surface smoothness with a mean Ra
Abstract translation:公开了具有改进的韧性的具有能够承受高温但不牺牲边缘线安全性的CVD涂层的切削刀具刀片。 插入涂层包括具有50-500MPa的低拉伸应力水平和α-Al 2 O 3的TiC x N z N层 具有高表面光滑度的平均Ra <0.12μm的AFM技术测定的层3,其通过对涂层进行强力的湿式喷砂操作获得。
Abstract:
The present invention provides a method of handling abrasive solids materials used in an abrasive cutting procedure which jets a high-pressure abrasive slurry through a nozzle (7) onto a work piece over and/or in a catcher tank (8). This handling method includes catching the used abrasive slurry together with work piece kerf material in the catcher tank, and passing at least some abrasive solids collected in the catcher tank as a slurry to a partitioning apparatus which includes a vibratory sieve (27). The handling method also includes partitioning the slurry with the partitioning apparatus in order to provide at least two solids streams. One of the solid streams passes through the sieve and the other passes across the sieve whilst entrained as a slurry. The handling method further includes passing as a slurry to the nozzle (7) for jetting a pressurised or pressurisable slurry that has partitioned solids stream which has passed through the sieve (27).
Abstract:
The present invention provides a method of handling abrasive solids materials used in an abrasive cutting procedure which jets a high-pressure abrasive slurry through a nozzle (7) onto a work piece over and/or in a catcher tank (8). This handling method includes catching the used abrasive slurry together with work piece kerf material in the catcher tank, and passing at least some abrasive solids collected in the catcher tank as a slurry to a partitioning apparatus which includes a vibratory sieve (27). The handling method also includes partitioning the slurry with the partitioning apparatus in order to provide at least two solids streams. One of the solid streams passes through the sieve and the other passes across the sieve whilst entrained as a slurry. The handling method further includes passing as a slurry to the nozzle (7) for jetting a pressurised or pressurisable slurry that has partitioned solids stream which has passed through the sieve (27).
Abstract:
The present invention provides a method of handling abrasive solids materials used in an abrasive cutting procedure which jets a high-pressure abrasive slurry through a nozzle (7) onto a work piece over and/or in a catcher tank (8). This handling method includes catching the used abrasive slurry together with work piece kerf material in the catcher tank, and passing at least some abrasive solids collected in the catcher tank as a slurry to a partitioning apparatus which includes a vibratory sieve (27). The handling method also includes partitioning the slurry with the partitioning apparatus in order to provide at least two solids streams. One of the solid streams passes through the sieve and the other passes across the sieve whilst entrained as a slurry. The handling method further includes passing as a slurry to the nozzle (7) for jetting a pressurised or pressurisable slurry that has partitioned solids stream which has passed through the sieve (27).
Abstract:
Techniques for singulating a substrate into a plurality of component parts is disclosed. The singulation techniques include generating a jet stream in order to cut through large components so as to produce smaller components. The techniques are particularly suitable for singulating surface mount devices such as chip scale packages, ball grid arrays (BGA), flip chips, lead less packages (QFN) and the like. The techniques are also suitable for singulating photonic devices.
Abstract:
The present invention provides a method of handling abrasive solids materials used in an abrasive cutting procedure which jets a high-pressure abrasive slurry through a nozzle (7) onto a work piece over and/or in a catcher tank (8). This handling method includes catching the used abrasive slurry together with work piece kerf material in the catcher tank, and passing at least some abrasive solids collected in the catcher tank as a slurry to a partitioning apparatus which includes a vibratory sieve (27) . The handling method also includes partitioning the slurry with the partitioning apparatus in order to provide at least two solids streams. One of the solid streams passes through the sieve and the other passes across the sieve whilst entrained as a slurry. The handling method further includes passing as a slurry to the nozzle (7) for jetting a pressurised or pressurisable slurry that has partitioned solids stream which has passed through the sieve (27).
Abstract:
The invention provides an abrasive jet system having a high-pressure fluid supply (10) means supplying fluid to a vessel (11) which includes a layer of abrasive slurry and a top layer that contains substantially of fluid over the layer of abrasive slurry. The system also includes a first conduit (14) which leads from the fluid supply means to the top layer of fluid in the vessel and as high-pressure fluid is fed into the vessel, causes displacement of abrasive slurry from a discharge conduit (16). The system further includes a second conduit (21) which connects at different points to the first conduit and the discharge conduit, and including a fluid valve (13) between the operative connection to the first conduit and the discharge conduit, that controls the fluid flow within the second conduit. The fluid valve is closed once the system is pressurised to displace abrasive slurry through the discharge conduit (16) and is opened upon de-pressurization of the system to allow fluid flow from the first conduit (14) to the second conduit and to stop discharge of the abrasive slurry.
Abstract:
A method of removing a coating, such as paint, varnish, biological growth or grime, from a surface, the method comprising selecting a suitable particulate solid having a particular size of from 150-250 mm, and a fluid carrier to form a spray mixture and spraying the mixture as a jet spray so as to impact and at least partially remove the coating. The hardness of the particulate solid is less than 8.0 on the Moh scale. The pressure applied to the spray mixture to generate the spray is from 3x105 to 1.5x106 Nmnull2. An apparatus comprising a blasting post and a compressor to generate the spray mixture and propel it from a nozzle is also disclosed. Heat may be applied to the carrier, either prior to or when mixing with the particulate solid.