Abstract:
A low-profile access port for subcutaneous implantation within a patient. The access port can include a set of receiving cups which can be placed in fluid communication with a catheter. The set of receiving cups can provide a greater skin surface with which to access the port to avoid repeated penetrations at a single locus, such as during consecutive dialysis treatments. The access port can alternatively include needle penetrable arms or elongate chambers that also have a slim, low profile. The access port can include a needle guide to direct subsequent needle access to different insertion points to permit healing at the previous insertion points. The access port can be formed of a modular construction with a first conduit, a second conduit, and an outer shell. The outer shell can include a proximal portion and a distal portion. The access port can include a stem assembly and a locking member.
Abstract:
A medical device comprises a flexible member that can be adhesively attached to a housing of the medical device, allowing implantation of the medical device into a body through an incision of reduced size. The flexible member can be attached to the housing either before or after implantation into the body. The flexible member comprises suture locations, including a permeable membrane or a suture hole, for suturing the medical device to tissue of the body. The suture holes can be filled with a substance penetrable by a suture needle, to minimize tissue ingrowth before or after suturing.
Abstract:
A medical device comprises a flexible member that can be adhesively attached to a housing of the medical device, allowing implantation of the medical device into a body through an incision of reduced size. The flexible member can be attached to the housing either before or after implantation into the body. The flexible member comprises suture locations, including a permeable membrane or a suture hole, for suturing the medical device to tissue of the body. The suture holes can be filled with a substance penetrable by a suture needle, to minimize tissue ingrowth before or after suturing.
Abstract:
An implantable port includes a bottom portion having a needle-penetrable region running continuously along a majority of a perimeter of the implantable port. A method for customized suturing of an implantable port also includes creating a port pocket, and advancing a suture needle through the needle-penetrable region. The needle-penetrable region could be a self-sealing elastomer, such as silicone. The method could include the step of determining suture locations after the port pocket is created.
Abstract:
The subcutaneously implantable vascular access port has two parts including a body and a wing. The body supports a chamber covered by a septum, with a septum held in place over the chamber by a collar. The chamber is coupleable to a vascular structure, such as through tubing extending from the body, for delivery of medical preparations. The body is preferably elongate in form. The wing is configured to be adjustable in width. In one embodiment the wing rotates relative to the body and has an elongate form similar to that of the body. When the wing is rotated it extends laterally from the body and enhances a stability of the body. In another embodiment, the wing is provided as a deformable wing which can expand laterally out of side openings of a cavern in the body into which the deformable wing is inserted.
Abstract:
An injection port system comprises an injection port and an applier. The port comprises a body and a plurality of fasteners. The fasteners are integral with the body and are movable from a non-deployed position to a deployed position. The applier comprises a port engagement portion and an actuator. The port engagement portion is configured to selectively engage the port body to selectively retain the port relative to the applier. The actuator is operable to move the fasteners to the deployed position. The applier is also configured to disengage the port engagement portion from the port body to release the port from the applier when the actuator moves the fasteners to the deployed position. The actuator may release the port from the applier by moving a resilient member away from the port body as the actuator also moves the fasteners from the non-deployed position to the deployed position.
Abstract:
An apparatus and method for positioning a barrier to cell ingrowth on the exterior surface of a port being implanted under the skin of a patient is provided. The barrier is formed by a film sheet configured to form a cover of the exterior surface of the port and remain mounted thereon in an as-used position. So engaged the film forms a barrier to cell ingrowth upon the port and additionally positions cell growth inhibitors on the exposed surface of the film adjacent to the surrounding cells. Engagement of the film to the port is accomplished by one or a combination of elastic contraction, heat shrinking or adhesive.
Abstract:
An implantable port includes a bottom portion having a needle-penetrable region running continuously along a majority of a perimeter of the implantable port. A method for customized suturing of an implantable port also includes creating a port pocket, and advancing a suture needle through the needle-penetrable region. The needle-penetrable region could be a self-sealing elastomer, such as silicone. The method could include the step of determining suture locations after the port pocket is created.
Abstract:
A vascular access port is described that is elongate in form. A distal end is coupled to a tube which leads into a body lumen. A proximal end has a head thereon with a septum which can be repeatedly penetrated by a needle and reseal, for repeated administration of medications or other compositions through the port and into the body of the patient. A wing is attached to the body that has two positions including a streamlined first position for implantation and a wider second position for stabilization of the port after implantation. A stay is preferably also provided to abut the wing when in the second position to keep the wing in the second position when fully deployed.
Abstract:
A detachment mechanism, and methods of use, for use in delivering a medical device preferably over a guidewire are provided. The detachment mechanism includes a first and second engagement member. The members are configured to receive the guidewire and have a first end attached to the control member and the device, respectively, a second end, and a notch formed in the body to form an interlocking tooth. The notch is sized to receive the interlocking tooth of the other member. The members are interlockable to couple the medical device to the control member and to allow the guidewire to pass therethrough. The notch can be angled to permit easier detachment between the members and for better torqueability and pushability/pullability between the control member and the medical device. The members can also include a bend region configured to enhance bendability along a portion of the members.