Abstract:
Techniques for data-capable band management in an integrated application and network communication data environment are described, including receiving input from one or more sensors coupled to a wearable computing device, processing the input to generate a control signal, the control signal being configured to initiate execution of one or more operations of a device in data communication with the wearable computing device, and initiating a data communication protocol, the data communication protocol being configured to transmit the control signal from the wearable computing device to the device.
Abstract:
Embodiments relate generally to electrical/electronic hardware, computer software, wired and wireless network communications, portable, wearable, and stationary media devices. RF transceivers and/or audio system in each media device may be used to wirelessly communicate between media devices and allow configuration and other data to be wirelessly transmitted from one media device to another media device. The proximity detection system may be configured to detect a presence of a user or multiple users and upon detecting presence, access content on a user device, and record the content while also playing back the content on the media device. One or more user devices in proximity of the media device post detection may wirelessly communicate with the media device and the media device may orchestrate handling and/or queuing of content from those devices or from a wirelessly accessible location such as the Cloud, Internet, NAS, Flash memory, or other wireless sources.
Abstract:
Mobile device speaker control may include: monitoring one or more devices wirelessly coupled with a data network, receiving one or more data packets from each of the one or more devices, filtering received data packets by evaluating a received signal strength (e.g., RSSI) of the received packets, comparing the received signal strength of each of the received packets to a threshold to determine whether the one or more devices are to perform an action, and performing the action only if one or more indicia other than the received signal strength indicate a near field proximity within the threshold or a direct physical contact between a wireless device receiving the data packets and one of the one or more devices that is wirelessly transmitting the data packets.
Abstract:
Embodiments of the invention relate generally to electrical and electronic hardware, computer software, wired and wireless network communications, and wearable computing and audio devices for communication audio. More specifically, disclosed are an apparatus and a method for processing audio signals to include spatially modulated message audio signals as a portion of a monaural signal. In some embodiments, a method includes receiving a message for a loudspeaker. The method can determine whether an audio signal is in communication with the loudspeaker and a type of a message of the message. Message audio for the message can be spatially modulated as a function of the type of message. A mono-spatial audio signal can be formed based the audio signal and the spatially-modulated message. Thus, a monaural audio signal can be modulated to generate mono-spatial effects for presenting the messages.
Abstract:
Embodiments relate generally to electrical/electronic hardware, computer software, wired and wireless network communications, portable, wearable, and stationary media devices. RF transceivers and/or audio system in each media device may be used to wirelessly communicate between media devices and allow configuration and other data to be wirelessly transmitted from one media device to another media device. The proximity detection system may be configured to detect a presence of a user or multiple users and upon detecting presence, access content on a user device, and record the content while also playing back the content on the media device. One or more user devices in proximity of the media device post detection may wirelessly communicate with the media device and the media device may orchestrate handling and/or queuing of content from those devices or from a wirelessly accessible location such as the Cloud, Internet, NAS, Flash memory, or other wireless sources.
Abstract:
Systems, apparatus, devices, and methods for converting electrical signals into sound using an acoustic transducer. The inventive acoustic transducer utilizes the motion of an airfoil shaped element to generate a sound wave, with the airfoil element being driven in response to an electrical signal input to a suitable driving element. In some embodiments, the airfoil element or elements act to mechanically couple the motion of an armature attached to the driver to the surrounding air, producing sound waves in a more efficient manner than typical acoustic transducer devices. Embodiments of the invention may be used in the design of loudspeakers, earpieces, headphones, and other devices for which a high efficiency transducer is desired.
Abstract:
Embodiments relate generally to electrical and electronic hardware, computer software, wired and wireless network communications, and wearable/mobile computing devices configured to facilitate health and wellness monitoring and maintenance. More specifically, disclosed are systems, components and methods to detect physiological characteristics, such as heart rate, of an organism in real-time based on components of light. In various embodiments, a method can include receiving color channel signals including imagery data generated by, for example, an image capture device. A linear combination of the color channel signals can form a combined color channel signal. The method also can include transforming continuously the combined color channel signal to establish local maxima associated with multiple scales. Further, portions of time associated with the local maxima can be identified and data signal representing a physiological characteristic can be generated. A local maximum can indicate the presence of enhanced blood volume adjacent a tissue surface.
Abstract:
Techniques for data-capable band management in an integrated application and network communication data environment are described, including receiving a first input and a second input from one or more sensors coupled to a wearable computing device, processing the first input to determine a pattern, processing the second input to determine an environmental condition, referencing the pattern against a pattern library, the pattern library indicating a threshold for the environmental condition, generating a signal indicating whether the environmental condition exceeds the threshold, and generating a control signal, the control signal configured to initiate execution of an operation if the signal indicates the environmental condition exceeds the threshold.
Abstract:
Embodiments relate generally to electrical and electronic hardware, computer software, wired and wireless network communications, and wearable computing devices for sensing health and wellness-related physiological characteristics. More specifically, disclosed is a physiological sensor using, for example, acoustic signal energy to determine physiological characteristics in one mode, such as a heart rate, the physiological sensor being disposed in a wearable device (or carried device), and generating data communication signals using acoustic signal energy in another mode. The physiological sensor also can be configured to receive data communication signals. In at least one embodiment, an apparatus includes one or more multimodal physiological sensors configured to receive physiological signals in a first mode and at least generate data communication signals in a second mode. A wearable housing includes the multimodal physiological sensors, and a multimodal physiological sensing device is configured to receive a sensor signal and generate data representing a physiological characteristic.