Back end of line nanowire power switch transistors

    公开(公告)号:US10971609B2

    公开(公告)日:2021-04-06

    申请号:US16549266

    申请日:2019-08-23

    摘要: An integrated circuit (IC) structure with a nanowire power switch device and a method of forming the IC structure are disclosed. The method includes forming a first layer of metal lines of a first back end of line (BEOL) interconnect structure and forming a semiconductor nanowire structure on a first metal line of the first layer of metal lines. The BEOL interconnect structure is formed on a front end of line (FEOL) device layer having multiple active devices. The method further includes forming a first dielectric layer wrapped around the semiconductor nanowire structure, forming a metal layer on the dielectric layer and on a second metal line of the first layer of metal lines, and forming a second layer of metal lines of a second BEOL interconnect structure on the semiconductor nanowire structure. The first and second metal lines are electrically isolated from each other.

    Fin-like field effect transistor patterning methods for achieving fin width uniformity

    公开(公告)号:US10930767B2

    公开(公告)日:2021-02-23

    申请号:US16387889

    申请日:2019-04-18

    摘要: FinFET patterning methods are disclosed for achieving fin width uniformity. An exemplary method includes forming a mandrel layer over a substrate. A first cut removes a portion of the mandrel layer, leaving a mandrel feature disposed directly adjacent to a dummy mandrel feature. The substrate is etched using the mandrel feature and the dummy mandrel feature as an etch mask, forming a dummy fin feature and an active fin feature separated by a first spacing along a first direction. A second cut removes a portion of the dummy fin feature and a portion of the active fin feature, forming dummy fins separated by a second spacing and active fins separated by the second spacing. The second spacing is along a second direction substantially perpendicular to the first direction. A third cut removes the dummy fins, forming fin openings, which are filled with a dielectric material to form dielectric fins.

    Dual crystal orientation for semiconductor devices

    公开(公告)号:US10930569B2

    公开(公告)日:2021-02-23

    申请号:US16426660

    申请日:2019-05-30

    摘要: The present disclosure relates to a semiconductor device and a manufacturing method, and more particularly to a semiconductor device with fin structures having different top surface crystal orientations and/or different materials. The present disclosure provides a semiconductor structure including n-type FinFET devices and p-type FinFET devices with different top surface crystal orientations and with fin structures having different materials. The present disclosure provides a method to fabricate a semiconductor structure including n-type FinFET devices and p-type FinFET devices with different top surface crystal orientations and different materials to achieve optimized electron transport and hole transport. The present disclosure also provides a diode structure and a bipolar junction transistor structure that includes SiGe in the fin structures.

    Method for manufacturing nanostructure with various widths

    公开(公告)号:US10811317B2

    公开(公告)日:2020-10-20

    申请号:US16681621

    申请日:2019-11-12

    摘要: Methods for manufacturing semiconductor structures are provided. The method includes alternately stacking first epitaxy layers and second epitaxy layers to form a semiconductor stack and forming a first mask structure and a second mask structure over the semiconductor stack. The method further includes forming spacers on sidewalls of the second mask and patterning the semiconductor stack to form a first fin structure covered by the first mask structure and a second fin structure covered by the second mask structure and the spacers. The method further includes removing the first epitaxy layers of the first fin structure to form first nanostructures and removing the first epitaxy layers of the second fin structure to form second nanostructures. In addition, the second nanostructures are wider than the first nanostructures.