Abstract:
The invention relates to a pyromechanical separating element having a hermetically sealed pyrotechnic pressure element (2), which is installed in a housing (1) and has a gas-forming pyrotechnic charge, and a detachable latching pin (5) which is separated from the pressure element (2) by a driving volume (19) and is inserted into the housing (1), wherein a first securing point is arranged on the housing (1) and a second securing point is arranged on the latching pin (5), and the latching pin (5) is anchored on the housing (1) by way of an arresting and force-limiting element (8).
Abstract:
The invention relates to a pyrotechnic detonator with an igniter support of plastic, which bears an ignition element. A cylindrical metal housing is fastened to the igniter support, into which the ignition reaches. A booster charge is arranged in the metal housing. To improve seal tightness and lower the manufacturing costs, for mechanical support a metal insert is integrated into the igniter support, the metal insert being encased by the plastic of the igniter support.
Abstract:
The invention relates to a pyromechanical separating device comprising a housing (2) wherein an electrically conductive current conductor rail (1) is arranged. Said current conductor rail is embodied such that it can be separated at a separation point (7) by a separating cutting tool (5) which is driven by a pyrotechnical propelling charge. The current conductive rail (1) comprises, on the ends thereof (14), a fixing means (6) for connecting electrical conductors. According to the invention, both end parts (14) of the current conductor rail (1) are disposed at right angles to the plane of the separation point (7) in order to prevent a break in the current conductor rail (1), and the separation point (7) is formed by a tapering of the cross section of the conductor.
Abstract:
The invention relates to a pyromechanical battery pole disconnect element, comprising a housing (1) in which an electrical conductor is located, a pyrotechnic active element (14) including a breaking piston with a disconnect element (7) to sever the electrical conductor at an isolating point (11), and a pyrotechnic charge to drive the disconnect element (7). The invention proposes that all of the current-conducting components except the active element (14) be combined to form a one-piece battery terminal clamp element (5).
Abstract:
The invention relates to a boundary light cartridge and a method for producing the same having a cartridge case (2) with a fitted projectile, a propelling charge powder arranged inside the cartridge case (2), and an ignition assembly for the propelling charge power, whereby the cartridge case (2) has a circumferential radial indentation (10) on the base (3) thereof in which the ignition assembly is arranged. In ignition assemblies which lack harmful substances, the invention provides that the base (3) of the cartridge case is pressed inward at least in partial areas in order to guarantee a complete and uniform reaction during short ignition times of an ignition assembly. As a result, the opening (13) of the indentation (10) is reduced in size toward the interior of the cartridge case (2).
Abstract:
The hybrid gas generator to inflate airbags comprises two combustion chambers (14, 16), in each of which a solid material charge (15, 17) is placed, and a storage chamber (11) containing a pressurized storage gas. The storage chamber (11) is connected to diffusion chamber (30) by a closing member (29) which can be perforated. The first solid material charge (15), and the second solid material charge (17) can, for instance, can be sequentially ignited by separate igniter elements (18, 19), thereby determining the pressure accumulation.
Abstract:
A gas generator of sheet-metal constructional type for a motor vehicle passenger protection device, the generator having a concentric style of construction with a combustion chamber (2) with a gas-generating charge (3) being disposed around an ignition chamber having an igniter and an ignition charge (1) and the combustion chamber (2) being surrounded by an expansion chamber (4). To achieve lower manufacturing costs, a smaller overall size combined with less weight and good recycling properties, the sheet metal parts forming the combustion chamber (2) and the expansion chamber (4) are connected to one another exclusively by metal-forming techniques.
Abstract:
A gas-producing material for a gas generator, particularly, for an inflatable impact cushion for protecting motor vehicle passengers is made up of a combustible liquid gas mixture of one or several short-chain hydrocarbons and nitrogen monoxide. As a result of exothermic action during combustion there is a multifold increase in volume so that no filters which are required for solid matter generators, are necessary.
Abstract:
Gas generator for an inflatable impact cushion for protecting an occupant of a motor-vehicle from injury, has a housing, in which is formed a storage chamber for liquified gas. The storage chamber is separated by a partition wall from a combustion chamber also formed in the housing. An ignition device is positioned in a precombustion chamber, and has an ignition charge to generate combustion gases during ignition. In the precombustion chamber there is guided, in a displaceable manner, a piston which, because of the combustion gases of the ignition charge, moves into and through the combustion chamber in a direction of the partition wall, in order to penetrate the partition wall. When the partition wall is penetrated there is a connection between the storage chamber and the combustion chamber by way of a liquified gas channel system so that liquified gas can flow into the combustion chamber. At the same time a connection is created between the precombustion chamber and the (main) combustion chamber by way of ignition channels formed in the piston. Hot combustion gases of the ignition charge ignite the liquified gas. The rising internal pressure in the combustion chamber causes displacement of the longitudinally displaceably guided partition wall, which moves together with the piston and thereby continuously forces liquid gas from the storage chamber into the combustion chamber. The combustion gases emerge, through outlet openings in the housing.
Abstract:
A passive safety device comprises a sensor unit for determining vehicle accelerations and decelerations, an evaluating unit for evaluating the output signal of the sensor unit, and a triggering unit for the activation of an occupant protection system upon the reception of a trigger signal, to protect the occupants from injuries. The individual units of the safety device are connected by way of optical lightguides, i.e. the communication among the individual units takes place through optical light signals. The sensor unit has an optical-mechanical acceleration sensor with at least one input lightguide, light being transmitted to the acceleration sensor by way of this lightguide. This light is transmitted within the acceleration sensor to at least one output lightguide. The optical system of the acceleration sensor arranged between the two lightguides is exposed to the accelerations to be detected and changes its optical properties in dependence on the magnitude of the acceleration forces. The output signal of the acceleration sensor, i.e. the light from the at least one output lightguide, is a measure for the effective acceleration and permits either quantitative information or qualitative information (larger than, larger than or equal to, smaller than, smaller than or equal to a predetermined threshold value) regarding the actual acceleration.