摘要:
Radio frequency (RF) duplexing devices and methods of operating the same are disclosed. In one embodiment, an RF duplexing device includes a transmission port, a receive port, a first duplexer, and a second duplexer. The first duplexer is coupled to the transmission port and the receive port, and is configured to provide a first phase shift from the transmission port to the receive port. The second duplexer is also coupled to the transmission port and the receive port. However, the second duplexer is configured to provide a second phase shift that is differential to the first phase shift from the transmission port to the receive port. By providing the second phase shift so that the second phase shift is differential to the first phase shift, the RF duplexing device can provide isolation through cancellation without needing to introduce significant insertion losses.
摘要:
Circuitry, which includes a linear amplifier and a linear amplifier power supply, is disclosed. The linear amplifier at least partially provides an envelope power supply signal to a radio frequency (RF) power amplifier (PA) using a selected one of a group of linear amplifier supply voltages. The linear amplifier power supply provides at least one of the group of linear amplifier supply voltages. Selection of the selected one of the group of linear amplifier supply voltages is based on a desired voltage of the envelope power supply signal.
摘要:
Embodiments of circuitry, which includes power supply switching circuitry, a first inductive element, and a second inductive element, are disclosed. The power supply switching circuitry provides a first switching output signal to the first inductive element and a second switching output signal to the second inductive element. The first inductive element has a first inductor current and the second inductive element has a second inductor current. The second switching output signal is delayed from the first switching output signal by a switching signal delay. The first inductor current and the second inductor current combine to provide a combined inductor current, which has a frequency response with a group of notches, such that frequency locations of the group of notches are based on the switching signal delay.
摘要:
The present disclosure relates to a split-band duplexer architecture that takes advantage of a relationship between a frequency division duplex (FDD) transmit band, an FDD receive band, and a time division duplex (TDD) band, which has frequencies located between FDD transmit band frequencies and FDD receive band frequencies. As such, by splitting the FDD receive and transmit bands into two sub-bands, two separate sub-band duplexers may be used to fully support the FDD receive and transmit bands. Further, a passband of one of the sub-band duplexers may be widened to support the TDD band while transmitting, and a passband of the other of the sub-band duplexers may be widened to support the TDD band while receiving. By using sub-band duplexers, isolation margins and insertion loss margins may be increased, which may allow use of standard filter components, such as surface acoustic wave (SAW) filters.
摘要:
A switchable RF transmit/receive (TX/RX) multiplexer, which includes a group of RF TX bandpass filters, a group of RF TX switching elements, and a group of RF RX bandpass filters; is disclosed. The group of RF TX bandpass filters includes a first RF TX bandpass filter and a second RF TX bandpass filter, such that each of the first RF TX bandpass filter and the second RF TX bandpass filter is coupled to a first filter connection node. The group of RF TX switching elements includes a first RF TX switching element coupled between the first filter connection node and a first common connection node, which is coupled to a first RF antenna. Each of the group of RF RX bandpass filters is coupled to the first common connection node.
摘要:
This disclosure relates generally to radio frequency (RF) front-end circuitry for different types of carrier aggregation, along with methods of operating the same. In one embodiment, the RF front-end circuitry includes a first diplexer, a second diplexer, first antenna selection circuitry, and second antenna selection circuitry. In order to maintain adequate isolation between high bands and low bands but provide carrier aggregation, the first antenna selection circuitry is configured to selectively couple each of a first plurality of RF ports to any one of a first low band port in the first diplexer and a second low band port in the second diplexer, while the second antenna selection circuitry is configured to selectively couple each of the second plurality of RF ports to any one of a first high band port in the first diplexer and a second high band port in the second diplexer.
摘要:
Aspects disclosed in the detailed description include a wireless charging circuit comprising a radio frequency (RF) power harvesting circuit. In one aspect, the RF power harvesting circuit is configured to harvest a wireless RF charging signal provided by a wireless charging station to generate a direct-current (DC) charging signal to charge a battery, for example, a lithium-ion (Li-ion) battery, in a battery-operated electronic device. In another aspect, a wireless charging controller controls the RF power harvesting circuit to dynamically increase or decrease an effective charging power of the DC charging signal according to a target charging power determined according to a charging profile of the battery. By dynamically adjusting the effective charging power provided to the battery according to the charging profile of the battery, it is possible to provide fast charging to the battery while protecting the battery from overcharging damage.
摘要:
A direct current (DC) voltage converter configured to transition between operation modes is disclosed. A voltage selection circuitry is provided in a DC voltage conversion circuit to control a buck-boost converter that generates a DC output voltage. As opposed to conventional methods of switching the buck-boost converter between a buck mode and a boost mode based on a single switching threshold, the voltage selection circuitry is configured to switch the buck-boost converter between the buck mode and the boost mode based on multiple voltage thresholds. Each of the multiple voltage thresholds defines a respective range for the DC output voltage. By controlling the buck-boost converter based on multiple voltage thresholds, it is possible to provide a smoother transition between the buck mode and the boost mode, thus reducing voltage errors in the DC output voltage and improving reliability of the DC voltage conversion circuit.
摘要:
Embodiments of a tunable radio frequency (RF) diplexer and methods of operating the same are disclosed. In one embodiment, the RF diplexer includes a first hybrid coupler, a second hybrid coupler, an RF filter circuit, and a phase inversion component. Both the RF filter circuit and the phase inversion component are connected between the first hybrid coupler and the second hybrid coupler. The phase inversion component is configured to provide approximately a differential phase. The RF filter circuit is configured to provide a passband and a notch. The RF filter circuit is tunable to provide the notch on both a high-frequency side of the passband and a low frequency side of the passband. Accordingly, the tunable RF diplexer provides lower insertion losses and higher isolation regardless of whether the one of the diplexed frequency bands is set at higher frequencies or lower frequencies than the other diplexed frequency band.
摘要:
An RF ladder filter having a parallel capacitance compensation circuit is disclosed. The parallel capacitance compensation circuit is made up of a first inductive element with a first T-terminal and a first end coupled to a first ladder terminal and a second inductive element with a second T-terminal that is coupled to the first T-terminal of the first inductive element and a second end coupled to a second ladder terminal. Further included is a compensating acoustic RF resonator (ARFR) having a fixed node terminal and a third T-terminal that is coupled to the first T-terminal of the first inductive element and the second T-terminal of the second inductive element, and a finite number of series-coupled ladder ARFRs, wherein the parallel capacitance compensation circuit is coupled across one of the finite number of series-coupled ARFRs by way of the first ladder terminal and the second ladder terminal.