Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. The apparatus identifies first entity and transmits a very low duty cycle signal (LDCS) configuration of the first entity. The apparatus may comprise, e.g., an LPN that is not in a dormant state or a macrocell. The apparatus may receive LDCS information for the first entity. The apparatus may determine the LDCS configuration and transmit the LDCS configuration to the first entity.
Abstract:
In order to provide a generic access rule, the present disclosure proposes a new potential set of adaptivity rules for LBE based on LBT. The generic access rule of the present disclosure provides LTE-U and Wi-Fi coexistence and DL/UL coexistence in both LTE-U and Wi-Fi. The apparatus receives, from the first master device, a resource allocation for communicating with the second master device. The apparatus also determines a type of CCA procedure to perform before communicating with the second master device on an unlicensed channel. The apparatus further performs a CCA procedure to obtain a transmission opportunity based on the determining, the CCA procedure being one of an ICCA procedure or an ECCA procedure. In addition, the apparatus transmit data to the second master device in accordance with the resource allocation on the unlicensed channel when the transmission opportunity is obtained.
Abstract:
Certain aspects of the present disclosure relate to methods and apparatus for mitigating resource conflicts between ultra low latency (ULL) and legacy transmissions. A base station may determine a region of a subframe having overlapping resource allocations for a first device of a first type (e.g., ULL device) and a second device of a second type (e.g., legacy device), wherein the first device of the first type has a capability to perform certain procedures with low latency relative to the second device of the second type that lacks the capability. The base station may modulate data from the region of the subframe for transmission to the first and the second devices, using a hierarchical modulation scheme.
Abstract:
Certain aspects relate to methods and apparatus for discovering whether one or more enhanced capabilities are supported by devices (e.g., user equipment (UE), base station (BS), etc.) in a network. The enhanced capabilities may include, for example, the ability to support certain low latency procedures, enhanced component carrier (eCC) capability, and the like. The devices in the network may perform one or more handover-related procedures (e.g., cell selection/reselection, make-before-break handover, etc.) and/or other procedures (e.g., QoS negotiation, etc.) based, at least in part, on support for the one or more enhanced capabilities.
Abstract:
Certain aspects of the present disclosure provide techniques that may be used to help enable low latency communications between a user equipment (UE) and a base station (BS) using quick uplink channels that enable a reduced transmission time interval (TTI). Additionally, certain aspects of the present disclosure provide techniques for managing communications in a wireless communication system, for example, by using enhanced downlink control channels.
Abstract:
Various aspects described herein relate to communicating in a wireless network. An uplink resource grant can be received from a network entity for communicating in the wireless network. A transmission time interval (TTI) for an uplink transmission within a subframe based on the uplink resource grant can be determined, wherein the TTI comprises one or more symbols which are a subset of a plurality of symbols in the subframe. Communications can be transmitted to the network entity over resources specified in the uplink resource grant during the TTI.
Abstract:
A data structure for managing user equipment communications in a wireless communication system is presented. In some examples, the data structure may include one or more resource element blocks into which a frequency bandwidth of a downlink channel is divided within a symbol that defines a transmission time interval in a downlink subframe. Furthermore, the data structure may include a control region and a data region within at least one resource element block of the one or more resource element blocks. Additionally, the data structure may include a downlink resource grant, located within the control region, for a user equipment served by the downlink channel. In an additional aspect, a network entity and method for generating the example data structure are provided.
Abstract:
In an aspect of the disclosure, a method, a computer-readable medium, and an apparatus are provided. The apparatus may be a second base station. The second base station receives a measurement report and a cell identifier, associated with a first base station, from a UE. The second base station determines, based on the cell identifier, that the first base station is in a dormant state. The second base station sends an activation request to the first base station, based on the measurement report, to prompt the first base station to transition from the dormant state to an active state. The second base station further includes handing off the UE to the first base station.
Abstract:
The present disclosure provides methods and apparatuses for multi-carrier transmissions over adjacent channels that reduce self-jamming due to asymmetric interference. In an aspect, a large bandwidth load-base equipment (LBE) carrier may be provided such that CCA is performed jointly over the entire bandwidth. In another aspect, additional CCA timeslots may be used to synchronize the two carriers. In a further aspect, an extended CCA may be performed on a primary unlicensed carrier while a simple CCA may be performed on a secondary unlicensed carrier. In yet another aspect, LBE may be deployed on some carriers while frame-base equipment (FBE) may be deployed on other carriers.
Abstract:
Certain aspects of the disclosure relate to performing cross-subframe control channel signaling for wireless communications. A method may be provided for signaling downlink control channel resource allocations and/or physical control format indications in a subframe different from the subframe in which a downlink data transmission may be performed. In one aspect, the method may include transmitting PDCCH and/or PCFICH during a first subframe to allocate resources for a PDSCH during a second subframe and transmitting the PDSCH during the second subframe.