Abstract:
A display device may be provided and may be configured to present a virtual field of view comprising a virtual object superimposed on a real-world scene. A controller may be provided and configured to modify display of the virtual object by the display device based on a first color of a real-world object in the real-world scene. The virtual object in the virtual field of view may be superimposed over the real-world object. A lumen output of the display device for displaying the virtual object may be decreased.
Abstract:
A multi-channel sound (MCS) system features intelligent calibration (e.g., of acoustic echo cancelation (AEC)) for use in dynamic acoustic environments. A sensor subsystem is utilized to detect and identify changes in the acoustic environment and determine a “scene” corresponding to the resulting acoustic characteristics for that environment. This detected scene is compared to predetermined scenes corresponding to the acoustic environment. Each predetermined scene has a corresponding pre-tuned filter configuration for optimal AEC performance. Based on the results of the comparison, the pre-tuned filter configuration corresponding to the predetermined scene that most closely matches the detected scene is utilized by the AEC subsystem of the multi-channel sound system.
Abstract:
Various arrangements for handling a call by a mobile device and/or selecting a function for execution by the mobile device are presented. A phone call may be commenced by a mobile device. During the phone call, the mobile device may collect proximity data that indicates the mobile device is not proximate to an ear of a user. The microphone of the mobile device may be muted in response to the proximity data that indicates the mobile device is not proximate to the ear of the user.
Abstract:
This disclosure provides systems, methods, and apparatus, including computer programs encoded on computer storage media, for displaying information in various display regions within wearable display devices in a manner that enhances user experience and extends battery life. The wearable display devices may include a flexible display region and may be capable of operating in a wrinkled state. In some aspects, the wearable display devices may be capable of displaying images at different image qualities in the separate display regions. For example, in some implementations, wearable display devices include a first display region that has a higher pixel density than the second display region. In some aspects the wearable display devices may be configured to determine and/or select a display region in which specific image content is displayed. For example, text may be displayed region best suited to display text while video is displayed in region best suited to display video.
Abstract:
This disclosure provides systems, methods, and apparatus, including computer programs encoded on computer storage media, for displaying information in various display regions within wearable display devices in a manner that enhances user experience. The wearable display devices may include a flexible display region that may be capable of operating in a wrinkled state. In one aspect, a wearable display device includes one or more sensors configured to provide information regarding the position of one or more display regions on the wearable display device. In some aspects, the device includes a processor that is capable of selecting where to display image data on the device. In some aspects, the selection of an appropriate display region is based at least in part on a privacy level associated with the image data and/or the positioning of the wearable device in space with respect to the user.
Abstract:
Method and apparatus for displaying augmented reality contents are disclosed. The method may include controlling a camera to scan an environment in view of a user, identifying a set of surfaces in the environment for displaying user interface windows according to characteristics of the environment, prioritizing a set of augmented reality contents for display with respect to the set of surfaces in the environment, and displaying the set of augmented reality contents on the set of surfaces in a display. Characteristics of the environment comprise at least aspect ratio of the set of surfaces with respect to the set of augmented reality contents to be displayed, and/or background color of the set of surfaces with respect to the set of augmented reality contents to be displayed.
Abstract:
Described herein are methods and devices that employ wireless network to control the lighting of a target image scene or subject. As described, connected environments enable control of lighting devices within the environment through the use of a network. Some embodiments of the imaging devices described herein may employ the network to control lighting devices for the purpose of illuminating a target scene or subject. Certain embodiments may employ data regarding camera location, subject location, light bulb location, and the parameters of each light bulb in a room to calculate desired lighting parameters for capturing an image of the subject, and may further be able to wirelessly adjust the light bulb parameters to match the calculated parameters.
Abstract:
Methods, systems and devices are provided for blocking spoiler content from being presented by a content presenting device to a user of a mobile computing device. The content presenting device and the mobile computing device may communicate using a networking framework. One or more spoiler alert events received by the content presenting device via the communication networking framework from the mobile computing device include information associated with content that has not been viewed by a user of the mobile computing device. The information associated with the content that has not been viewed is compared with the content to be presented. It may be determined whether the content to be presented by the content presenting device includes the spoiler content, and, if so, the presentation of the spoiler content by the content presenting device is restricted.
Abstract:
Systems and methods for determining a battery-level of an electronic device and conserving the battery charge of the electronic device are disclosed. The battery consumption of an electronic device may be reduced when the user or the device learns via user input or determines via prediction that the battery will be depleted before the next possible charge cycle. Reducing battery consumption could be accomplished by accessing an application requiring less power consumption and/or delaying post-processing of sensor data related to that application, for example a camera application. Prediction of battery life could include determining the time to the next expected battery charge and delaying the processing of sensor data until the electronic device is plugged in and charging or has reached a predetermined charge level.
Abstract:
Described herein are methods and devices that employ wireless network to control the lighting of a target image scene or subject. As described, connected environments enable control of lighting devices within the environment through the use of a network. Some embodiments of the imaging devices described herein may employ the network to control lighting devices for the purpose of illuminating a target scene or subject. Certain embodiments may employ data regarding camera location, subject location, light bulb location, and the parameters of each light bulb in a room to calculate desired lighting parameters for capturing an image of the subject, and may further be able to wirelessly adjust the light bulb parameters to match the calculated parameters.