Abstract:
Technology for performing downlink scheduling is disclosed. One or more subframes can be identified within a defined frame of a primary cell to perform cross-subframe scheduling for a secondary cell. The primary cell can be configured to communicate with a user equipment (UE) using a licensed band and the secondary cell can be configured to communicate with the UE using an unlicensed band. The cross-subframe scheduling can be performed for one or more downlink subframes of the secondary cell using the one or more subframes of the primary cell.
Abstract:
A method and system for managing inter-cell interference for a plurality of neighboring wireless communication cells in a wireless network is disclosed. Power data indicative of a received power level for a signal from the base station for any user equipment in an outer region of a cell is determined by a base station for each of a plurality of neighboring cells. Number data indicating at least one of a number and a relative number of user equipments within the outer region of a cell is also determined by each base station from the timing of a signal between the base station and the user equipment. The power data and the number data is transmitted to a central manager, where the power data and the number data for the cells is processed to compute a power level in each of a plurality of sub-bands for transmission by each base station. The computed power level in each sub-band is transmitted back to each base station for the control of the power level transmitted by the base station in each sub-band.
Abstract:
In one embodiment, an apparatus includes memory storing instructions and processing circuitry coupled to the memory. The processing circuitry is to implement the instructions to select a resource block group (RBG) size configuration from a set of RBG size configurations based on a bandwidth part (BWP) size. Each RBG size configuration is to indicate RBG sizes associated with respective ranges of BWP sizes, and the RBG sizes are to indicate a number of frequency-domain physical resource blocks (PRBs) for physical downlink shared channel (PDSCH) or physical uplink shared channel (PUSCH) transmissions. The processing circuitry is further to implement the instructions to allocate PRBs for communication between the gNB device and a user equipment (UE) device via the PDSCH or PUSCH transmissions based on the selected RBG size, and to encode downlink control information (DCI) that indicates the allocated PRBs for transmission to the UE device.
Abstract:
An apparatus can receive or transmit parameters for a sounding reference signal (SRS) transmission configuration as an uplink (UL)/downlink (DL) configuration of a serving cell. A time division duplex (TDD) operation with a plurality of component carriers (CCs) can be enabled/generated based on the parameters and at least one component carriers being reserved for the UL transmission or having a higher priority than a physical channel transmission such as a physical uplink shared channel (PUSCH) transmission or a physical uplink control channel (PUCCH) transmission.
Abstract:
Techniques for contention window size (CWS) adaptation (CWSA) are discussed. One example apparatus can comprise a processor that can receive HARQ messages UEs in response to PDSCH transmissions in one or more reference subframes. The HARQ messages can comprise HARQ-ACK values that denote a HARQ-ACK state for a transport block associated with License Assisted Access (LAA) operation, wherein each of the HARQ-ACK states is one of a DTX state, an ACK state, a NACK state, or an “any” state. The processor can also; determine a metric value for each of the HARQ-ACK states; calculate a CWS adjustment metric based on the determined metric values; increase a CWS to a next higher allowed value when the CWS adjustment metric is greater than or equal to a threshold; and reset the CWS to a minimum allowed value when the CWS adjustment metric is less than the threshold.
Abstract:
A UE may estimate the power headroom value when using shortened Transmission Time Intervals (sTTI). In one implementation, the power headroom value may be calculated based on an estimation of the UE transmission power over two or seven OFDM symbols. Alternatively or additionally, the power headroom value may be calculated based on an estimation of the UE transmission power over the period of an sTTI. Alternatively or additionally, the power headroom value may be calculated based on an average of the UE transmission power over multiple sTTI periods in a subframe. Alternatively or additionally, the power headroom value may be calculated based on a maximum or minimum of the UE transmission power measured over multiple sTTI periods in a subframe. Alternatively or additionally, the power headroom value may be calculated based on UE transmission power measured in the first or the last sTTI period in a subframe.
Abstract:
An apparatus configured to be employed in a user equipment (UE) associated with a new radio (NR) system is disclosed. The apparatus comprises a processing circuit configured to determine an NR-physical uplink control channel (PUCCH) resource to be utilized by the UE, for a transmission of a hybrid automatic repeat request (HARQ)-acknowledge (ACK) feedback message to a gNodeB, wherein the determined NR-PUCCH resource comprises a HARQ-PUCCH resource. In some embodiments, the HARQ-ACK feedback message comprises a feedback message generated at the UE in response to processing a downlink (DL) data transmission signal comprising data received from the gNodeB. In some embodiments, the processing circuit is further configured to generate a transmission of the HARQ-ACK feedback message using the determined HARQ-PUCCH resource.
Abstract:
Techniques discussed herein can facilitate communication of common control messages via multi-beam operation. Embodiments discussed herein can include BSs (Base Stations) configured to transmit scheduling information associated with a common control message via a beamformed DL (Downlink) control channel in each symbol of two or more symbols of a slot, wherein the DL control channel is one of a dedicated physical channel or a NR (New Radio) PDCCH (Physical Downlink Control Channel); and transmit the common control message via a DL data channel based at least in part on the scheduling information.
Abstract:
Embodiments of a User Equipment (UE), Evolved Node-B (eNB) and methods for communication are generally described herein. The UE may receive downlink control information (DCI) that schedules a transport block (TB) that includes multiple code blocks. The UE may determine a transport block size (TBS) based on the DCI. The UE may attempt to decode the code blocks. The UE may, if the TBS is greater than a predetermined threshold: bundle the code blocks into code block groups for hybrid automatic repeat request (HARQ) acknowledgement; and transmit a HARQ bit per code block group. The UE may, if the TBS is less than or equal to the threshold, transmit a HARQ bit that indicates whether a decode failure has occurred for at least one of the code blocks of the TB.
Abstract:
Techniques for transmitting and receiving beamformed transmission(s) of a common search space of a DL (Downlink) control channel are discussed. One example embodiment that can be employed at a UE (User Equipment) comprises processing circuitry configured to: select a set of receive beamforming weights for a DL (Downlink) control channel; and decode one or more control channel sets from a common search space of the DL control channel, wherein each control channel set of the one or more control channel sets is mapped to an associated symbol of one or more symbols of a slot, wherein each control channel set of the one or more control channel sets has an associated transmit beamforming, and wherein each control channel set of the one or more control channel sets comprises a common set of control information.