Abstract:
The application provides a method for measuring a dispersion coefficient of an optical fiber. A network device sends a first optical supervisory channel (OSC) measurement signal and a second OSC measurement signal, where wavelengths of the first OSC measurement signal and the second OSC measurement signal are different. The network device receives the returned first OSC measurement signal and second OSC measurement signal, where the first OSC measurement signal and the second OSC measurement signal are transmitted through a first optical fiber and a second optical fiber to return to the network device, and the first optical fiber and the second optical fiber are a to-be-tested optical fiber. The network device determines a delay difference between the received first OSC measurement signal and second OSC measurement signal. The network device determines a dispersion coefficient of the to-be-tested optical fiber based on the delay difference.
Abstract:
A system for monitoring optical signal-to-noise ratio (OSNR) is provided. In some specific examples, the system may use a pilot tone power of a signal modulated with pilot tone to derive the pure signal power and the variance of the whole electric field to derive the total power (pure signal power plus amplified spontaneous emission (ASE) power of the signal). The ASE power can be obtained by subtracting the pure signal power from the total power (ASE+pure signal). Once the ASE power and the pure signal power are known, the OSNR can be calculated.
Abstract:
Embodiments can provide spurs removal in a pilot-tone spread signal. For achieving this, at least one peak in the pilot-tone spread signal may be found. A predetermined small range of the spectra power around the at least one peak may be removed. In some situations, the removal of the spurs in the pilot-tone spread signal may result in inadvertent removal of a normal part of the pilot-tone spread signal. For addressing this, a power ratio between the spectrum of the pilot-tone spread signal before the removal and after the removal can be calculated. For accounting for the power loss due to the spurs removal, this power ratio can be applied to the pilot-tone spread signal after the removal to obtain a corrected pilot-tone spread signal.
Abstract:
In some examples, an apparatus receives a first measurement of a plurality of wavelength channels obtained at a first location of an optical medium, and a second measurement of the plurality of wavelength channels obtained at a second location of the optical medium. The apparatus computes a value relating to dispersion in the optical medium by correlating the first measurement and the second measurement.
Abstract:
During optical performance monitoring in low SNR conditions, the detection of pilot data may be more difficult because the detector may mistake noise for the pilot data signal. Systems and methods are disclosed herein that try to address this problem. In one embodiment, a pilot tone detector processes the received signal to determine a maximum correlation peak, and then performs tracking of the correlation peak over time. Unlike the pilot data signal, noise is typically more transient in nature. Therefore, if a correlation peak does not actually correspond to the pilot data signal, but instead corresponds to noise, then the correlation peak typically disappears over time when tracked. A search for a new correlation peak may then be performed. When a correlation peak is determined that actually corresponds to the pilot data signal, then the correlation peak typically remains when tracked.
Abstract:
System, apparatus, and method embodiments are provided for suppressing the stimulated Raman scattering (SRS) crosstalk in multiple wavelength channel signals propagating in fiber links, such as in WDM/DWDM or other optical communications systems. The SRS is reduced or suppressed by separating the channels into two sets of different channels, such as even and odd channels, and then performing subtraction of signal amplitudes between the two sets of channels. The channels are separated by an interleaver into the two sets. Alternatively, a wavelength selective switch (WSS) is used to separate the channels into the two sets on which the subtraction of signal amplitudes is then performed. In an embodiment, the signals are low frequency modulation signals used for channel monitoring for optical communications systems.