Abstract:
System, apparatus, and method embodiments are provided for suppressing the stimulated Raman scattering (SRS) crosstalk in multiple wavelength channel signals propagating in fiber links, such as in WDM/DWDM or other optical communications systems. The SRS is reduced or suppressed by separating the channels into two sets of different channels, such as even and odd channels, and then performing subtraction of signal amplitudes between the two sets of channels. The channels are separated by an interleaver into the two sets. Alternatively, a wavelength selective switch (WSS) is used to separate the channels into the two sets on which the subtraction of signal amplitudes is then performed. In an embodiment, the signals are low frequency modulation signals used for channel monitoring for optical communications systems.
Abstract:
This application discloses an optical signal control method and apparatus, and belongs to the optical communication field. The apparatus includes: a light source, configured to output a first optical signal; an optical switch module, configured to receive the first optical signal and an external second optical signal, and output a third optical signal; and a detection module, configured to detect whether a power change of the second optical signal on at least one wavelength channel is greater than a preset power change threshold, if so, the optical switch module adjusts on/off states of at least one wavelength channel of the received first optical signal and the at least one wavelength channel of the received second optical signal, so that an adjusted first optical signal and an adjusted second optical signal are combined to obtain the third optical signal.
Abstract:
The application provides a method for measuring a dispersion coefficient of an optical fiber. A network device sends a first optical supervisory channel (OSC) measurement signal and a second OSC measurement signal, where wavelengths of the first OSC measurement signal and the second OSC measurement signal are different. The network device receives the returned first OSC measurement signal and second OSC measurement signal, where the first OSC measurement signal and the second OSC measurement signal are transmitted through a first optical fiber and a second optical fiber to return to the network device, and the first optical fiber and the second optical fiber are a to-be-tested optical fiber. The network device determines a delay difference between the received first OSC measurement signal and second OSC measurement signal. The network device determines a dispersion coefficient of the to-be-tested optical fiber based on the delay difference.
Abstract:
Embodiments are provided for applying pilot tone modulations to optical signals by introducing bias bits to data frames carried on the optical signals. Since the modulation is done by modifying data, the modulation depth is accurate, and there is no need for calibration or feedback control, which can improve power monitoring accuracy and simplify implementation. In an embodiment, a transmitter determines a period of a pilot tone modulation for tracking or identifying an optical channel. The transmitter inserts a sequence of bias bits, periodically according to the determined period, in a plurality of frames comprising original data bits. The amplitudes of the optical signals carrying the frames are modulated at a higher frequency than the pilot tone modulation. The optical signals are then transmitted including the bias bits within the frames.