Abstract:
An imaging device includes: a lens-side suppression unit that moves an anti-vibration lens, which is provided in an interchangeable imaging lens mounted on an imaging device body including an imaging element, to a position, which is determined according to a detection result of a detection unit detecting vibration applied to a device, to suppress an influence of the vibration on a subject image; an imaging element-side suppression unit that moves the imaging element to suppress a shift in an angle of view caused by the movement of the anti-vibration lens; and a control unit that performs control on the lens-side suppression unit to limit a movable range of the anti-vibration lens, which is moved by the lens-side suppression unit, on the basis of the amount of the maximum shift in the angle of view caused by the movement of the imaging element performed by the imaging element-side suppression unit.
Abstract:
The present invention provides an image processing device, an imaging device, an image processing method, and a program which are capable of accurately correcting blurring caused in first image data of an image using a near-infrared ray as a light source and, accurately performing a point image restoration process on second image data of an image using visible light and a near-infrared ray as a light source. An image processing device according to an aspect of the present invention includes an image input unit, a determination unit that determines whether image data is first image data or second image data, a first restoration processing unit that performs a first restoration process using first restoration filters for performing phase correction and amplitude restoration on the determined first image data, and a second restoration processing unit that performs a second restoration process using second restoration filters for performing amplitude restoration without phase correction on the determined second image data.
Abstract:
An image processing device and an image processing method capable of satisfactorily performing a point image restoration process of a visible light image and a point image restoration process of a near-infrared light image are provided. A point image restoration process is performed on luminance data Y indicating a visible light image and IR data indicating a near-infrared light image using a first point image restoration filter based on a first point spread function with respect to visible light of an optical system and a second point image restoration filter based on a second point spread function with respect to near-infrared light of the optical system. An appropriate point image restoration process is performed on the IR data so that restoration strength (second gain β) in the point image restoration process for the IR data captured with radiation of near-infrared light is higher than restoration strength (first gain α) in the point image restoration process for the luminance data Y.
Abstract:
The present invention provides an image processing device, an imaging device, an image processing method, and a program capable of effectively performing a point image restoration process on a visible light image and a near-infrared ray image, and improving accuracy of a point image restoration process. An image processing device according to an aspect of the present invention includes an image input unit that receives first image data indicating a visible light image imaged with sensitivity to a visible light wavelength band by using an optical system and second image data indicating a near-infrared ray image imaged with sensitivity to a near-infrared ray wavelength band by using the optical system, a first restoration processing unit that performs a first restoration process of performing phase correction and amplitude restoration on the first image data, and a second restoration processing unit that performs a second restoration process of performing amplitude restoration without phase correction on the second image data.
Abstract:
A restoration filter generation device which generates a restoration filter for performing a restoration process on luminance system image data, the restoration process being based on a point-image distribution in an optical system, the luminance system image data being image data relevant to luminance and being generated based on image data for each color of multiple colors, the restoration filter generation device including an MTF acquisition device which acquires a modulation transfer function MTF for the optical system; and a restoration filter generation device which generates the restoration filter based on the modulation transfer function MTF, the restoration filter suppressing an MTF value of image data for each color of the multiple colors to 1.0 or less at least in a region of a particular spatial frequency or less, the image data for each color of the multiple colors corresponding to the luminance system image data after the restoration process.
Abstract:
There are provided an image processing apparatus, an image processing method, a program, and a recording medium capable of compatibly achieving a high-accuracy filtering process and reduction in a necessary storage capacity. An image processing apparatus 35 includes a filtering process unit 41 that performs an image filtering process including a plurality of filtering processes. The filtering process unit 41 applies a filter to processing target data to acquire filter application process data, and applies a gain to the filter application process data to acquire gain application process data, in each filtering process. In each filtering process, the gain applied to the filter application process data is acquired based on a target frequency characteristic of the image filtering process determined according to a pixel position in original image data.
Abstract:
There are provided an image processing apparatus, an image processing method, a program, and a recording medium capable of compatibly achieving a high-accuracy filtering process and reduction in a necessary storage capacity. An image processing apparatus includes a filtering process unit that performs an image filtering process including a plurality of filtering processes. The filtering process unit applies a filter to processing target data to acquire filter application process data, and applies a gain to the filter application process data to acquire gain application process data, in each filtering process. In each filtering process, the gain applied to the filter application process data is acquired based on a “target frequency characteristic of the image filtering process” specified based on an optical characteristic of an optical system used when the original image data is acquired, that is, the optical characteristic according to an imaging condition when the original image data is acquired.
Abstract:
There is provided an image processing device that acquires restored image data by performing restoration processing using a restoration filter based on the PSF of an optical system for original image data acquired by capturing a subject image using the optical system. This device includes a restoration processing unit 38 that performs restoration processing by applying the restoration filter to the original image data, a quasi-focus region detection unit 50 that detects a quasi-focus region in an original image corresponding to the original image data, and a sharpness restoration control unit 37. The sharpness restoration control unit adjusts the restoration strength magnification U for original image data of the detected quasi-focus region so as to be smaller than the restoration strength magnification U for original image data of at least a focus region.
Abstract:
A restoration processing section 38 performs restoration processing using a restoration filter based on a point spread function for image data. An outline enhancement processing section 39 performs sharpening processing using a sharpening filter for image data. A sharpness restoration control section 37 acquires a total sharpness restoration rate based on the restoration rate (restoration strength magnification U) of the image data based on the restoration processing and the sharpening rate (sharpening strength magnification V) of the image data based on the sharpening processing, acquires one of the restoration rate and the sharpening rate, and calculates the other one of the restoration rate and the sharpening rate based on the total sharpness restoration rate.
Abstract:
A camera system, a camera body, and a communication method capable of satisfactorily acquiring lens information necessary for image processing or the like for a frame of a video from an interchangeable lens are provided. Three-wire serial communication is performed in which a request signal is transmitted to the interchangeable lens in synchronization with a synchronization signal (VSYNC) of an imaging element in a video recording mode, and a response signal is received from the interchangeable lens. In a communication mode in the video recording mode, the number of transmissions of a first request signal relating to acquisition of lens information such as a focus position, a diaphragm value, and a zoom position is limited. Accordingly, communication other than communication relating to acquisition of lens information can be performed in a period of one frame.