Abstract:
A shore power HVAC system for a vehicle is provided. The vehicle has a vehicular HVAC system with an engine compressor, a condenser, and an expansion valve and an evaporator coupled to each other in series by a plurality of conduits. The shore power HVAC system includes an electric compressor structured to compress a coolant fluid and a diverter valve structured to allow fluid to pass through a selected fluid path. The electric compressor is coupled to, and in fluid communication with the evaporator and the diverter valve. The diverter valve is further coupled to the engine compressor. Thus, a first coolant fluid loop and a second coolant fluid loop are created. The first coolant fluid loop passes through, in series, the engine compressor, the diverter valve, the condenser, the expansion valve, and the evaporator. The second coolant fluid loop passes through, in series, the electric compressor, the diverter valve, the condenser, the expansion valve and the evaporator. The diverter valve selectively directs which loop the coolant fluid may pass through.
Abstract:
A supercharging system for an engine includes an air pump, an electrical machine, an engine-connected input member and a variable-ratio power transmission mechanism. The power transmission mechanism includes a sun member operatively connected to one of the air pump, the electrical machine and the input member. At least one planet member is drivingly interfaced with the sun member and rotatably carried by a carrier operatively connected to another one of the air pump, the electrical machine and the input member. An annulus is drivingly interfaced with the at least one planet member and operatively connected to the other one of the air pump, the electrical machine and the input member. The supercharging system also includes a brake configured to selectively inhibit rotation of at least one of the sun member, the carrier, and the annulus.
Abstract:
A supercharging system includes a generator having an electrical output and a power transmission mechanism having a mechanical input operatively connected to the engine and a mechanical output operatively connected to the generator. A motor is operatively connected to generator and powered by the electrical output. An air pump is operatively connected to and driven by the motor to provide charged air to the engine.
Abstract:
A structure for vertically housing an electronic component is disclosed as including a bottom support member and a top support member. The top support member is substantially parallel to the bottom support member. An open space is formed between the top support member and the bottom support member whereby the electronic component may be placed into the open space in a vertical orientation. A ventilating structure is disposed outside of the open space and is capable of channeling air into a middle portion of the electronic component in the open space.
Abstract:
Articles of manufacture and a method of making the articles are provided. The articles of manufacture comprise CpFlu metallocene catalyzed polypropylene homopolymers and C2–C3 random copolymers having narrow molecular weight distributions and low xylene solubles (or extractables) contents. Because of a number of desirable properties, the polypropylene homopolymers and C2–C3 random copolymers may be used to prepare a wide variety of useful articles, including but not limited to cast films, such as packaging; fibers suitable for use in fabrics and carpet applications, and injection and blow molded items such as bottles.
Abstract:
A double-lever mechanism is for the trip actuator of a circuit breaker having a housing, separable contacts and an operating member for opening and closing the contacts. A trip bar opens the separable contacts in response to a trip condition, such as an overcurrent condition. The trip actuator assembly is a self-contained unit including an actuation subassembly comprising the double-lever mechanism and a coil and a plunger housed within an enclosure. First and second trip levers of the double-lever mechanism are pivotally coupled to first and second ends of the enclosure, respectively. In response to the trip condition, the plunger extends, pivoting the first trip lever which engages and pivots the second trip lever in order to actuate the trip bar. The double-lever mechanism provides a mechanical advantage by reducing actuating forces and plunger travel.
Abstract:
A container for use in transporting particulate materials includes a plurality of product compartments, with each such compartment having a material outlet in communication therewith through which particulate material in the compartment may be discharged. The container also includes a gas-tight bulkhead separating a pair of adjacent product compartments, and an unloading system that is adapted for removal of particulate materials from the product compartments. The unloading system includes a source for supplying a pressurizing gas, and one or more top air conduits connecting the pressurizing gas source to the product compartments for conveying pressurizing gas to the product compartments. The unloading system also includes a material conveying conduit that is in fluid communication with one or more of the material outlets and which includes a discharge end through which particulate material may be unloaded. The unloading system is adapted for selectively pressurizing one or more of the product compartments so that particulate material may be discharged through the material outlet of a product compartment that is pressurized. The unloading system is also adapted for entraining material that is discharged through a material outlet in the material conveying conduit and conveying such material to the discharge end of the conduit.
Abstract:
A selectivated molecular sieve, e.g., ZSM-22 or ZSM-23, is used as olefin oligomerization catalyst to provide product, e.g., octenes and dodecenes from butene, having a low degree of branching and hindered double bonds.
Abstract:
A water-cooled magnetorheological fluid controlled combination fan drive and water pump (60) used in a cooling system. Introducing a magnetic field within a working chamber (91) between a drive ring (74) and a driven ring (84) increases the viscosity of a magnetorheological fluid by changing the state of the magnetorheological fluid from a free flowing liquid to a semi-solid state. The shear rate of the magnetorheological fluid in an activated state creates additional torque to drive an output shaft (108), and coupled fan (110), at a higher rotational speed to cool the engine coolant flowing through a closely coupled radiator. The rotation of the drive ring (74) also rotates an attached impeller assembly (112) having impellers (114) to move engine coolant through the cooling system. The magnetic field is induced by directing a flow of electrical current through an electronic coil (62) coupled within the water-cooled magnetorheological fluid controlled combination fan drive and water pump (60), and an electronic control unit coupled to the electronic coil (62) controls the amount of electrical current flowing through the coil (62). This maintains the temperature of the engine block within an acceptable temperature range at a particular engine speed.