Abstract:
Techniques are presented for distributing host route information of virtual machines to routing bridges (RBridges). A first RBridge receives a routing message that is associated with a virtual machine and is sent by a second RBridge. The routing message comprises of mobility attribute information associated with a mobility characteristic of the virtual machine obtained from an egress RBridge that distributes the routing message. The first RBridge adds a forwarding table attribute to the routing message that indicates whether or not the first RBridge has host route information associated with the virtual machine in a forwarding table of the first RBridge. The first RBridge also distributes the routing message including the mobility attribute information and the forwarding table attribute, to one or more RBridges in the network.
Abstract:
The present technology provides a system, method and computer-readable medium for configuration pattern recognition and inference, directed to a device with an existing configuration, through an extensible policy framework. The policy framework uses a mixture of python template logic and CLI micro-templates as a mask to infer the intent behind an existing device configuration in a bottom-up learning inference process. Unique values for device/network identifiers and addresses as well as other resources are extracted and accounted for. The consistency of devices within the fabric is checked based on the specific policies built into the extensible framework definition. Any inconsistencies found are flagged for user correction or automatically remedied by a network controller. This dynamic configuration pattern recognition ability allows a fabric to grow without being destroyed and re-created, thus new devices with existing configurations may be added and automatically configured to grow a Brownfield fabric.
Abstract:
The present technology provides a system, method and computer-readable medium for configuration pattern recognition and inference, directed to a device with an existing configuration, through an extensible policy framework. The policy framework uses a mixture of python template logic and CLI micro-templates as a mask to infer the intent behind an existing device configuration in a bottom-up learning inference process. Unique values for device/network identifiers and addresses as well as other resources are extracted and accounted for. The consistency of devices within the fabric is checked based on the specific policies built into the extensible framework definition. Any inconsistencies found are flagged for user correction or automatically remedied by a network controller. This dynamic configuration pattern recognition ability allows a fabric to grow without being destroyed and re-created, thus new devices with existing configurations may be added and automatically configured to grow a Brownfield fabric.
Abstract:
In one implementation, a method performed by a first node with interfaces configured as IP unnumbered interfaces sharing a single IP address and to communicate with a DHCP-associated second node includes: obtaining a first message that indicates a configuration status of a third node at a respective interface; obtaining a second message for the third node from the DHCP-associated second node that includes a temporary IP address for the third node and an indicator of a file server; obtaining a third message associated with the third node that includes the temporary IP address, the third message requests address information for the file server; and configuring the third node by establishing a connection between the third node and the file server to transfer at least one configuration file, where configuring the third node includes providing the temporary IP address to the DHCP-associated second node via BGP.
Abstract:
A method for programming a MAC address table by a first leaf node in a network comprising a plurality of leaf nodes is provided. Each leaf node comprises one or more Virtual Tunnel End Points (“VTEPs”) and instantiates a plurality of Virtual Routing and Forwarding elements (“VRFs”), with a corresponding Bridge Domain (“BD”) assigned to each VRF. The method includes obtaining information indicating one or more VTEP Affinity Groups (VAGs), each VAG comprising an identification of one VTEP per leaf node, obtaining information indicating assignment of each VRF to one of the VAGs, assigning each VAG to a unique Filtering Identifier (“FID”), thereby generating one or more FIDs, and programming the MAC address table, using FIDs instead of BDs, by populating the MAC address table with a plurality of entries, each entry comprising a unique combination of a FID and a MAC address of a leaf node.
Abstract:
Coordinating gateways for multi-destination traffic across a TRILL fabric and a VXLAN/IP fabric with a plurality of TRILL IS-IS TLVs and a plurality of Layer 3 IS-IS TLVs is provided herein. The plurality of TRILL IS-IS TLVs and the plurality of Layer 3IS-IS TLVs effectuate: grafting an IP multicast share tree with a plurality of TRILL distribution trees at only one of a plurality of gateways in a network interworking a TRILL fabric and a VXLAN/IP fabric; ensuring that multicast traffic traversing from the plurality of TRILL distribution trees is not looped back to the TRILL fabric through the VXLAN/IP fabric; restoring connectivity among a plurality of VXLAN/IP fabric partitions through the TRILL fabric if the VXLAN/IP fabric is partitioned; and restoring connectivity among a plurality of TRILL fabric partitions through the VXLAN/IP fabric if the TRILL fabric is partitioned.
Abstract:
A system and a method are disclosed for enabling interoperability between data plane learning endpoints and control plane learning endpoints in an overlay network environment. An exemplary method for managing network traffic in the overlay network environment includes receiving network packets in an overlay network from data plane learning endpoints and control plane learning endpoints, wherein the overlay network extends Layer 2 network traffic over a Layer 3 network; operating in a data plane learning mode when a network packet is received from a data plane learning endpoint; and operating in a control plane learning mode when the network packet is received from a control plane learning endpoint. Where the overlay network includes more than one overlay segment, the method further includes operating as an anchor node for routing inter-overlay segment traffic to and from hosts that operate behind the data plane learning endpoints.
Abstract:
A method is provided in one example embodiment and includes receiving from an orchestrator element for a new Virtual Routing and Forwarding element (“VRF”) created in a communications network a name of the VRF and interconnect identification; selecting a border element for the VRF; and creating in a database a VRF entry for the selected border element, the entry identifying a configuration profile for the selected border element. The method further includes forwarding a VRF create notification to the selected border element; and providing the configuration profile from the corresponding entry to the selected border element in response to a query to the database from the selected border element. The selected border element applies the configuration profile automatically to configure the selected border element.
Abstract:
Multi-destination frames in a network fabric may be carried in IP multicast packets. As such, the network fabric may us IP multicast technique such as a PIM protocol for handling the multi-destination frames. To provide redundancy, the system administrator can use phantom rendezvous points (RPs) that include multiple physical RPs where one of the RPs serves as a primary RP and the other RPs serve as secondary RPs (e.g., backup RPs). Instead of the system administrator manually configuring the phantom RPs, the RPs are automatically configured. To do so, the system administrator may use a GUI to provide multicast groups allocated for the multi-destination traffic, the number of desired phantom RPs (or physical RPs), and the desired RP redundancy. Based on these parameters, a data center manager generates one or more templates that automatically configure the network devices in the fabric as they are booted.
Abstract:
Systems, methods, and computer-readable media for OAM in overlay networks. In response to receiving a packet associated with an OAM operation from a device in an overlay network, the system generates an OAM packet. The system can be coupled with the overlay network and can include a tunnel endpoint interface associated with an underlay address and a virtual interface associated with an overlay address. The overlay address can be an anycast address assigned to the system and another device in the overlay network. Next, the system determines that a destination address associated with the packet is not reachable through the virtual interface, the destination address corresponding to a destination node in the overlay network. The system also determines that the destination address is reachable through the tunnel endpoint interface. The system then provides the underlay address associated with the tunnel endpoint interface as a source address in the OAM packet.