Abstract:
According to one aspect, an apparatus includes a first printed circuit board (PCB), the first PCB including a first interface, and a corrosion sensor assembly. The corrosion sensor assembly including a second interface arranged to be coupled to the first interface, the corrosion sensor assembly further including a signal trace field and a plurality of components, wherein the signal trace field and the plurality of components are arranged to provide an indication of whether the apparatus is in an environment that is corrosive.
Abstract:
To reduce the rate at which a false alternating current (“AC”) loss alarming signal is generated, but at the same time detect an actual AC loss situation in a timely manner, the disclosed method describes an AC line power loss detection and active verification method. If the AC line input voltage dips momentarily lower than a standard sine wave amplitude, the AC line may not be considered lost as long as it still has energy to drive a load. The method inserts a momentary load across the AC line and compares the AC line voltage before and after the extra load is applied. If the AC power is present, this extra loading will increase the AC loading current momentarily, but will not affect the AC line voltage. However, if the AC power is lost, such loading will lower the AC line voltage, indicating a loss of power.
Abstract:
In one embodiment, an apparatus includes a fan for cooling electronics within a chassis, the fan comprising a rotor with a plurality of fan blades connected thereto for generating an axial airflow during operation of the fan, a sensor for detecting failure of the fan, and an airflow blocking device positioned at an exhaust side of the fan and configured to prevent airflow through the fan upon detection of the fan failure, wherein the airflow blocking device is stowed in a position removed from a path of the axial airflow generated by the fan during operation of the fan. A method for preventing airflow recirculation at a failed fan is also disclosed herein.
Abstract:
In one embodiment, a method includes receiving power delivered over a data fiber cable at an optical transceiver installed at a network communications device and transmitting data and the power from the optical transceiver to the network communications device. The network communications device is powered by the power received from the optical transceiver. An apparatus is also disclosed herein.
Abstract:
In one embodiment, a piezoelectric device is positioned adjacent to a debris fence. A resonant frequency detection circuit connects with the piezoelectric device. The resonant frequency of the piezoelectric device is responsive to debris adjacent to the debris fence.
Abstract:
In one embodiment, a method includes obtaining, on a database system, a change definition request, the change definition request being obtained from a subscriber. The method also includes determining whether the change definition request defines a parametric change, the parametric change being associated with a parameter stored in the database system, and populating a criteria set associated with the parameter when it is determined that the change definition request is associated with the parametric change. Finally, the method includes determining when the parametric change occurs, and providing a first notification to the subscriber when it is determined that the parametric change has occurred.
Abstract:
In one embodiment, an apparatus includes a power source and a moveable charging arm coupled to the power source and comprising a charging plate for contact with an electric vehicle contact plate. The charging arm is operable to transmit direct current (DC) pulse power with testing performed between high voltage pulses directly from the charging plate to the electric vehicle contact plate to charge one or more batteries at the electric vehicle. A method for charging the electric vehicle is also disclosed herein.
Abstract:
A method that includes receiving an indication at a modular electronic system of initiation of online removal for a module removably inserted into a slot of the modular electronic system, increasing a fan speed at the modular electronic system before the module is removed, monitoring an internal temperature at the modular electronic system, and providing an indication that the module is ready for removal upon reaching a specified cooling state at the modular electronic system based on the temperature monitoring. A panel on an adjacent module is opened and extends into the slot upon removal of the module to substantially block airflow bypass from the slot and maintain cooling within the modular electronic system. An apparatus and logic are also disclosed herein.
Abstract:
In one embodiment, a method includes initiating a protection mode at a network device having a protective cover installed to filter airflow entering a network device, reducing one or more of a fan speed, processing functions, or power at the network device, exiting the protection mode upon removal of the protective cover from the network device, and increasing one or more of the fan speed, the processing functions, or the power to resume normal operation at the network device.
Abstract:
An apparatus includes a first printed circuit board (PCB), the first PCB including a first interface, and a corrosion sensor assembly. The corrosion sensor assembly including a second interface arranged to be coupled to the first interface. The corrosion sensor assembly further including a signal trace field and a plurality of components, where the signal trace field and the plurality of components are arranged to provide an indication of whether the apparatus is in an environment that is corrosive.