Abstract:
An evaporation coating apparatus comprising a heating unit (3) and a cylindrical member (1) disposed within the heating unit (3), wherein the cylindrical member (1) comprises a hollow sleeve (13) and a barrel (12) disposed at an inner side of the hollow sleeve (13) in a fitting manner; wherein a top end area of the hollow sleeve (13) is provided with a first evaporation hole (131), and an external surface of the hollow sleeve (13) is provided with an internal heater strip (4) connected to a control unit; wherein an external surface of the barrel (12) is provided with a groove (1′) extending along an axial central line of the barrel (12), the groove (1′) is provided with a plurality of compartments (11) arranged at interval space, and each of the compartments (11) is provided with a crucible (2); wherein the crucible (2) comprises a main body (21) which is disposed within the compartment (11) and sealed all around with one side opened, and a cover (22) which is connected to the main body (21) in a fitting manner and provided with a second evaporation hole (221) corresponding to the first evaporation hole (131); and wherein the heating unit (3) has a hollow columnar structure, and an external surface of the heating unit (3) is provided with an external heater strip (5) and a nozzle (31) which is corresponding to the first evaporation hole (131). The evaporation coating apparatus is mainly configured to manufacture large-sized displays and can improve the uniformity of film-forming with organic material on the surface of the substrate.
Abstract:
The present disclosure provides a printing head cleaning device, comprising a cleaning unit configured to spray cleaning liquid onto a nozzle of a printing head so as to clean the nozzle; and a drying unit configured to dry the cleaned nozzle.
Abstract:
The present disclosure provides a substrate support structure, a vacuum drying device and a vacuum drying method. The substrate support structure includes a support platform and a plurality of pins in the support platform. The plurality of pins is divided into at least two groups, and the at least two groups of pins are in the support platform in such a manner as to be liftable in the support platform, so that a substrate is supported by the at least two groups of pins alternately.
Abstract:
An inkjet printing device and method are provided. The inkjet printing device includes a nozzle head; and the nozzle head is provided with a main printing unit and an auxiliary printing unit which share a common liquid supplying pipeline. The main printing unit is located at a middle of the nozzle head and is configured to perform inkjet printing of pixel patterns. The auxiliary printing unit is located at an edge of the nozzle head and is configured to perform inkjet printing of protective patterns. The protective patterns are configured to produce a solvent-protective atmosphere for the pixel patterns at an edge of every printing process.
Abstract:
The present invention provides a mask plate, a method for processing an organic layer and a method for fabricating an organic light-emitting diode display substrate. The mask plate comprises a light transmitting region and a light shading region. The light transmitting region corresponds to a region of an organic layer to be removed. The light transmitting region is provided with a photothermal conversion material for converting light energy into heat energy. The light shading region is provided with a light blocking layer for blocking transmission of light. The mask plate is suitable for processing an organic layer and particularly suitable for forming an auxiliary via hole in an organic light-emitting layer of an organic light-emitting diode display substrate.
Abstract:
Embodiments of the present invention disclose a bended liquid crystal display and a manufacturing method and apparatus therefore. The method comprises: preparing an array substrate and a color filter substrate with flat glass sheets having different thermal expansion coefficients; applying adhesive sealant at edges of surfaces of the array substrate and/or the color filter substrate; heating the array substrate and the color filter substrate, and binding the expanded array substrate and color filter substrate together, to form an assembled substrate; and cooling the assembled substrate and forming a bended assembled substrate having a degree of curvature. The bended liquid crystal display has a better stability, and has no variation in its degree of curvature over service time.