Abstract:
A client device can be configured to identify data to be communicated with a network. In some examples, the client device can determine one or more transient properties of the client device and/or receive a connection request from a host device that is connected to the network, where the connection request comprises one or more connection properties of the host device. In some instances, the client device can also be configured to determine whether the host device is capable of transmitting the data to the network based at least in part on the one or more transient properties of the client device and the one or more connection properties of the host device and/or establish a connection with the host device in accordance with determining that the host device is capable of transmitting the data to the network.
Abstract:
A host device may include a first wireless communication circuit, a second wireless communication circuit including a proxy router, and a host processor communicatively coupled to the wireless communication circuits. The host device may receive, via the second wireless communication circuit, an advertisement message from a client device. The advertisement message may include a request for communication of data with a network. The host device may determine at least one of a communication policy preference of the host device and a network connection property of the host device. The proxy router may select the first or the second wireless communication circuit for use by the host device to communicate the data with the network. The host device may provide, via the second wireless communication circuit, a connection request to the client device, and then transfer, using the selected wireless communication circuit, the data between the client device and the network.
Abstract:
A client device can be configured to identify data to be communicated with a network. In some examples, the client device can determine one or more transient properties of the client device and/or receive a connection request from a host device that is connected to the network, where the connection request comprises one or more connection properties of the host device. In some instances, the client device can also be configured to determine whether the host device is capable of transmitting the data to the network based at least in part on the one or more transient properties of the client device and the one or more connection properties of the host device and/or establish a connection with the host device in accordance with determining that the host device is capable of transmitting the data to the network.
Abstract:
This disclosure relates to performing antenna selection to reduce interference in a wireless device. According to some embodiments, it may be determined whether simultaneous communication according to first and second wireless communication technologies causes performance degradation to a third wireless communication technology. If the simultaneous communication according to first and second wireless communication technologies does cause performance degradation to the third wireless communication technology, selection of antenna(s) used for the communications may be based at least in part on the determination that the simultaneous communication according to the first and second wireless communication technologies causes performance degradation to the third wireless communication technology.
Abstract:
A user equipment (UE) device may be configured to effectively manage coexistence of multiple radio access technologies (RATs) on the device. Respective controllers responsible for at least partially managing wireless communications according to corresponding respective RATs may communicate to each other expected data transfer patterns that take place over their respective communications links, including application-specific data transfer patterns and data-transfer-mechanism-specific data transfer patterns. The RAT controllers may manage their respective data transfers according to the expected data-transfer pattern information associated with the other RATs received from each in order to prevent data transmission by the device over one RAT link interfering with data transmission of the device over another RAT link. The expected data pattern information may be sent in messaging of a specific type with indexes determined based at least on a status of the data transfer mechanism and a connectivity status of the UE device.
Abstract:
A wireless communication system is presented for multiple wireless technology coexistence in a mobile device. A method according to this application might include obtaining one or more transmit allocation parameters for a wireless transmission via a first radio technology at a first wireless processor and the preparing to receive wireless data via a second radio technology at a second wireless processor. Next, the exemplary method might request that the wireless transmission be deferred, followed by deciding whether to grant the deferral request based at least on the one or more transmit allocation parameters.
Abstract:
A method for facilitating in-device coexistence between wireless communication technologies on a wireless communication device is provided. The method can include transmitting data traffic from the wireless communication device via an aggressor wireless communication technology; determining occurrence of an in-device interference condition resulting from transmission of the data traffic via the aggressor wireless communication technology interfering with concurrent data reception by the wireless communication device via a victim wireless communication technology; and reducing a bit rate of the data traffic transmitted via the aggressor wireless communication technology in response to the in-device interference condition.
Abstract:
An apparatus, system, and method for performing handover of a mobile station (MS) between a base station (BS) and an access point (AP) are described. In one embodiment, the MS may receive one or more threshold values for reporting measurements to the BS. The MS may convert the threshold values to device-specific threshold values. The MS may determine one or more network quality values associated with the AP. The MS may compare the network quality values to the device-specific threshold values. In response to the network quality values exceeding the device-specific threshold values, the MS may convert the network quality values to calibrated network quality values. The MS may provide the calibrated network quality values. The MS may perform handover from the BS to the AP based on providing the calibrated network quality values to the BS.
Abstract:
This disclosure relates to perfoming antenna selection to reduce interference in a wireless device. According to some embodiments, it may be determined whether simultaneous communication according to first and second wireless communication technologies causes performance degradation to a third wireless communication technology. If the simultaneous communication according to first and second wireless communication technologies does cause performance degradation to the third wireless communication technology, selection of antenna(s) used for the communications may be based at least in part on the determination that the simultaneous communication according to the first and second wireless communication technologies causes performance degradation to the third wireless communication technology.
Abstract:
A wireless communication system is presented for multiple wireless technology coexistence in a mobile device. A method according to this application might include obtaining one or more transmit allocation parameters for a wireless transmission via a first radio technology at a first wireless processor and the preparing to receive wireless data via a second radio technology at a second wireless processor. Next, the exemplary method might request that the wireless transmission be deferred, followed by deciding whether to grant the deferral request based at least on the one or more transmit allocation parameters.