Lens structure
    51.
    发明授权

    公开(公告)号:US11552405B1

    公开(公告)日:2023-01-10

    申请号:US16576148

    申请日:2019-09-19

    Applicant: Apple Inc.

    Abstract: A communication terminal may include an array of antenna modules. Each module may include an array of radiators on a substrate and a radio-frequency lens overlapping the array. The lens may include a tapered base on the substrate and a curved portion on the tapered base. The tapered base and curved portions may be rotationally symmetric about a central axis of the lens. The curved portion may be hemispherical. The tapered base portion may be conical and may have a first radius at the hemispherical portion and a second radius that is less than the first radius at the substrate. At least one radiator in the array may be located beyond the first radius and within the second radius from the central axis. The lens may be formed from lattice having interleaved layers of dielectric segments separated by gaps to reduce the overall weight of the module.

    Communication terminal
    52.
    发明授权

    公开(公告)号:US11528076B1

    公开(公告)日:2022-12-13

    申请号:US16575895

    申请日:2019-09-19

    Applicant: Apple Inc.

    Abstract: A communication terminal may include control circuitry and an array of antenna modules. Each module may include radiators on a substrate, a lens overlapping the radiators, a transceiver chain, and switching circuitry. The control circuitry may control the switching circuitry to activate a set of one or more radiators in a given module. The control circuitry may control the transceiver chain in that module to convey signals at a selected phase using each of the active radiators. Each of the active radiators may convey the signals over signal beams oriented in different directions by the lens. The control circuitry may adjust the active radiators in each module and may adjust the selected phase for each of the modules to generate a combined signal beam in a desired direction. The combined signal beam may be generated using signals from the active radiators in two or more modules across the array.

    Integrated millimeter wave antenna modules

    公开(公告)号:US11335992B2

    公开(公告)日:2022-05-17

    申请号:US16990879

    申请日:2020-08-11

    Applicant: Apple Inc.

    Abstract: An electronic device may be provided with an antenna module and a phased antenna array on the module. The module may include a logic board, an antenna board surface-mounted to the logic board, and a radio-frequency integrated circuit (RFIC) mounted surface-mounted to the logic board. The phased antenna array may include antennas embedded in the antenna board. The antennas may radiate at centimeter and/or millimeter wave frequencies. The logic board may form a radio-frequency interface between the RFIC and the antennas. Transmission lines in the logic board and the antenna board may include impedance matching segments that help to match the impedance of the RFIC to the impedance of the antennas. The module may efficiently utilize space within the device without sacrificing radio-frequency performance.

    Millimeter Wave Antennas Having Continuously Stacked Radiating Elements

    公开(公告)号:US20210098882A1

    公开(公告)日:2021-04-01

    申请号:US16584067

    申请日:2019-09-26

    Applicant: Apple Inc.

    Abstract: An electronic device may be provided with a phased antenna array. The array may convey signals greater than 10 GHz and may be formed on a substrate having transmission line layers and antenna layers. An antenna in the array may have a radiating element that includes first, second, and third overlapping patch elements on the antenna layers. The antenna may be fed using a differential transmission line coupled to a differential feed on the first patch element. The differential transmission line may include first and second signal traces. A first via may couple the first signal trace to the first, second, and third patch elements. A second via may couple the second signal trace to the first, second, and third patch elements. The patch elements may introduce capacitances to the radiating element that help to compensate for inductances associated with the distance between the radiating element and the signal traces.

    Electronic Devices with Probe-Fed Dielectric Resonator Antennas

    公开(公告)号:US20210091472A1

    公开(公告)日:2021-03-25

    申请号:US17112191

    申请日:2020-12-04

    Applicant: Apple Inc.

    Abstract: An electronic device may be provided with a phased antenna array and a display cover layer. The phased antenna array may include a probe-fed dielectric resonator antenna. The antenna may include a dielectric resonating element mounted to a flexible printed circuit. A feed probe may be formed from a patch of conductive traces on a sidewall of the resonating element. The feed probe may excite resonant modes of the resonating element. The resonating element may convey corresponding radio-frequency signals through the display cover layer. An additional feed probe may be mounted to an orthogonal sidewall of the resonating element for covering additional polarizations. Probe-fed dielectric resonator antennas for covering different polarizations and frequencies may be interleaved across the phased antenna array.

    Electronic Devices with Dielectric Resonator Antennas

    公开(公告)号:US20200280133A1

    公开(公告)日:2020-09-03

    申请号:US16289433

    申请日:2019-02-28

    Applicant: Apple Inc.

    Abstract: An electronic device may be provided with a phased antenna array and a display cover layer. The phased antenna array may include a dielectric resonator antenna. The dielectric resonator antenna may include a dielectric resonating element embedded in a lower permittivity dielectric substrate. The substrate and the resonating element may be mounted to a flexible printed circuit. A slot may be formed in ground traces on the flexible printed circuit and aligned with the resonating element. The slot may excite resonant modes of the resonating element. The resonating element may convey corresponding radio-frequency signals through the cover layer. A dielectric matching layer may be interposed between the resonating element and the cover layer. If desired, the slot may radiate additional radio-frequency signals and the matching layer may have a tapered shape. Dielectric resonator antennas for covering different polarizations and frequencies may be interleaved across the array.

    Millimeter wave transmission line structures

    公开(公告)号:US10763566B2

    公开(公告)日:2020-09-01

    申请号:US15655727

    申请日:2017-07-20

    Applicant: Apple Inc.

    Abstract: An electronic device may include a millimeter wave transceiver, a first antenna having a first resonating element at a first side of a substrate, and a second antenna having a second resonating element at a second side of the substrate. A first coplanar waveguide may convey millimeter wave signals between the transceiver and the first resonating element and a second coplanar waveguide may convey millimeter wave signals between the transceiver and the second resonating element. The first coplanar waveguide may be coupled to the first resonating element through the second coplanar waveguide. The second coplanar waveguide may be coupled to the second resonating element through the first coplanar waveguide. Ground conductors in the coplanar waveguides may form antenna ground planes for the first and second antennas while serving to maximize electromagnetic decoupling between the coplanar waveguides and thus isolation between the ports of the transceiver.

    Electronic Devices Having Antennas that Radiate Through a Display

    公开(公告)号:US20200136234A1

    公开(公告)日:2020-04-30

    申请号:US15884245

    申请日:2018-01-30

    Applicant: Apple Inc.

    Abstract: An electronic device may be provided with a display and a phased array antenna that transmits radio-frequency signals at frequencies greater than 10 GHz. The display may include a conductive layer that is used to form pixel circuitry and/or touch sensor electrodes. A filter may be formed from conductive structures within the conductive layer. The conductive structures may include an array of conductive patches separated by slots or may include conductive paths that define an array of slots. The filter may include an additional array of conductive patches stacked under the array of conductive patches to allow the slots to be narrower than would be resolvable to the unaided human eye. The periodicity of the conductive structures and the slots in the filter may be selected to tune a cutoff frequency of the filter to be greater than frequencies handled by the phased antenna array.

    Electronic Devices Having Communications and Ranging Capabilities

    公开(公告)号:US20200106158A1

    公开(公告)日:2020-04-02

    申请号:US16146556

    申请日:2018-09-28

    Applicant: Apple Inc.

    Abstract: An electronic device may be provided antennas and control circuitry. The antennas may be arranged in an array of unit cells. Each unit cell may include a first antenna that conveys signals in a first frequency band higher than 10 GHz and a second antenna that conveys radio-frequency signals in a second frequency band higher than the first frequency band. A first of the unit cells may be provided with a first set of antennas that transmits radio-frequency signals in a third frequency band higher than the second frequency band. A second of the antenna unit cells may be provided with a second set of antennas that receives the radio-frequency signals after being reflected off of external objects. The control circuitry may perform spatial ranging operations by processing the transmitted and received signals in the second frequency band.

Patent Agency Ranking