Abstract:
An electronic device may have an antenna for providing coverage in wireless communications bands of interest. The wireless communications bands may include a communications band at a first frequency. The antenna may have a parasitic antenna resonating element that supports a low efficiency resonance. In response to operation of the electronic device in free space, the low efficiency resonance will be located at a second frequency that is greater than the first frequency. In response to operation of the electronic device in proximity to a user's body or other external object, the antenna will be loaded and the low efficiency resonance associated with the parasitic antenna resonating element will shift to the communications band at the first frequency. The antenna may include a resonating element formed on a flexible printed circuit or a dielectric carrier such as a plastic support structure.
Abstract:
An electronic device may be provided with an antenna. The antenna may have an antenna resonating element and an antenna ground. The antenna resonating element may be formed from peripheral conductive housing structures. An audio jack or other connector may be mounted in an opening in the peripheral conductive housing structures. The audio jack may overlap the antenna ground. Contacts in the audio jack may be coupled to an interference mitigation circuit. The interference mitigation circuit may include capacitors coupled to the ground and inductors coupled between the contacts and the capacitors. Radio-frequency signal blocking inductors may be coupled between the interference mitigation circuit and respective ports in an audio circuit.
Abstract:
An electronic device may be provided with a housing. The housing may have a periphery that is surrounded by peripheral conductive structures such as a segmented peripheral metal member. A segment of the peripheral metal member may be separated from a ground by a slot. An antenna feed may have a positive antenna terminal coupled to the peripheral metal member and a ground terminal coupled to the ground and may feed both an inverted-F antenna structure that is formed from the peripheral metal member and the ground and a slot antenna structure that is formed from the slot. Control circuitry may tune the antenna by controlling adjustable components that are coupled to the peripheral metal member. The adjustable components may include adjustable inductors and adjustable capacitors.
Abstract:
An electronic device may be provided with antenna structures. The antenna structures may be coupled to non-near-field communications circuitry such as cellular telephone transceiver circuitry or wireless local area network circuitry. When operated at non-near-field communication frequencies, the antenna structures may be configured to serve as one or more inverted-F antennas or other antennas for supporting far field wireless communications. Proximity sensor circuitry and near-field communications circuitry may also be coupled to the antenna structures. When operated at proximity sensor frequencies, the antenna structures may be used in forming capacitive proximity sensor electrode structures. When operated at near-field communications frequencies, the antenna structures may be used in forming an inductive near-field communications loop antenna.
Abstract:
An electronic device may be provided with a primary antenna that is used for transmitting and receiving signals and a secondary antenna that is used for receiving signals. The primary and secondary antennas may be used together in a diversity arrangement when receiving signals. The electronic device may have a transceiver. A phase shifter may be interposed between the transceiver and the secondary antenna. Control circuitry may select a communications band of interest for transmitting signals with the primary antenna. The control circuitry can adjust the phase shifter in real time based on which communications band of interest has been selected for transmission with the primary antenna. The phase shifter may impose a phase shift on signals carried between the secondary antenna and the transceiver that ensures that primary antenna efficiency degradation associated with the presence of the secondary antenna in the vicinity of the primary antenna is avoided.