Abstract:
Systems and methods are disclosed for applying neural networks in resource-constrained environments. A system may include a sensor located in a resource-constrained environment configured to generate sensor data of the resource-constrained environment. The system may also include a first computing device not located in the resource-constrained environment configured to produce a neural network structure based on the sensor data. The system may further include a second computing device located in the resource-constrained environment configured to provide the sensor data as input to the neural network structure. The second computing device may be further configured to determine a state of the resource-constrained environment based on the input of the sensor data to the neural network structure.
Abstract:
Method and devices for testing a headphone with increased sensation are provided. The headphone can filter and amplify low frequency audio signals, which are then sent to a haptic device in the headphone. The haptic device can cause bass sensations at the top of the skull and at both ear cups. The testing system can evaluate the haptic and acoustic sensations produced by the headphone to evaluate if they have been properly assembled and calibrate the headphones if necessary.
Abstract:
Systems and methods are disclosed for applying neural networks in resource-constrained environments. A system may include a sensor located in a resource-constrained environment configured to generate sensor data of the resource-constrained environment. The system may also include a first computing device not located in the resource-constrained environment configured to produce a neural network structure based on the sensor data. The system may further include a second computing device located in the resource-constrained environment configured to provide the sensor data as input to the neural network structure. The second computing device may be further configured to determine a state of the resource-constrained environment based on the input of the sensor data to the neural network structure.
Abstract:
Method and devices for optimizing wireless network connections in transportation vehicles are provided. An onboard computing device in a transportation vehicle identifies blackout area with severe wireless signal interference caused by nearby wireless access points in the blackout area. The wireless interference can be remedied by dynamically switching wireless channel for the in-vehicle wireless connection between the onboard computing device and a mobile device in the vehicle. The wireless interference can also be remedied by pre-caching the data needed for a content presentation during a time period when the vehicle travels within the blackout area.
Abstract:
Method and devices for processing audio signals based on sound profiles are provided. A reproduction device can request a sound profile based on user information, device information, media metadata or a combination. The sound profiles can be customized and shared across multiple devices. User interfaces allow for the input of information that allows the reproduction device or a server in the cloud to select, modify, store, and analyze sound profiles. Deeper analysis allows for the improvement of sound profiles for individuals and groups. Intensity scoring of a music library can also be conducted.