Abstract:
A light modulating system for medical treatment and health care (MTHC) is applied to sense at least one of the physiology conditions of at least one user, and accordingly modulate at least one MTHC light beam. The system comprises a physiology condition parameter sensing unit, a light output parameter calculation unit, and a light modulation unit. The physiology condition parameter sensing unit is applied to sense at least one physiology condition parameter of the user, the light output parameter calculation unit is applied to calculate at least one light output parameter according to the physiology condition parameter, and the light modulation unit is applied to modulate the MTHC light beam according to the light output parameter.
Abstract:
A light emitting diode package structure having a heat-resistant cover and a method of manufacturing the same include a base, a light emitting diode chip, a plastic shell, and a packaging material. The plastic shell is in the shape of a bowl and has an injection hole thereon. After the light emitting diode chip is installed onto the base, the plastic shell is covered onto the base to fully and air-tightly seal the light emitting diode chip, and the packaging material is injected into the plastic shell through the injection hole until the plastic shell is filled up with the packaging material to form a packaging cover, and finally the plastic shell is removed to complete the LED package structure.
Abstract:
The present invention discloses an optical film with array of microstructures, having a first optical surface and a second optical surface for receiving an incident light. The optical film comprises at least a transparent microstructure formed on the first optical surface, wherein the microstructure further comprises: a first side for scattering the incident light; and a second side for collimating the incident light.
Abstract:
A method for fast macroblock mode decision is disclosed. The method includes: (A) determining if a motion cost at the origin (0, 0) or a prediction motion vector (PMV) for a 4n*4n macroblock is smaller than a first threshold; (B) if the motion cost is smaller than the first threshold, determining a macroblock mode as 4n*4n and ending the method; (C) if the motion cost is not smaller than the first threshold, using an adaptive diversity search strategy to perform motion estimation on four 2n*2n blocks associated with the 4n*4n macroblock; (D) determining if all motion costs of the four 2n*2n blocks in step (C) are smaller than a second threshold; and (E) if step (D) determines that the motion costs of the four 2n*2n blocks are smaller than the second threshold, determining the macroblock mode as 2n*2n and ending the method.
Abstract:
An apparatus and method for combining video signals from multiple users in a continuous presence video conferencing system. Video signals are received from each of a number of different system users. The signals include input frames each having a number of different groups-of-blocks (GOBs). The GOBs correspond to hierarchically organized video data and header information. The input frame GOBs are used to form a composite output video signal suitable for transmission to each of the system users. An output frame of the composite output signal incorporates at least one of the GOBs from the input frames of each of the users and less than all of the GOBs from the input frame of at least one of the users. The resulting output video signal provides flexible continuous presence video conferencing in which video signals from multiple users may be simultaneously displayed to all users in a selected divided-screen format. The input frames may be Quarter Common Intermediate Format (QCIF) frames and the output frames may be Common Intermediate Format (CIF) frames in accordance with the H.261 video coding standard.
Abstract:
A variable-length codeword encoder is disclosed which produces 8-bit output segments for storage in a buffer (23) for subsequent transmission over a transmission channel (24). The encoder includes two memory tables (15, 16), which produce in response to each input symbol to be encoded, a variable-length codeword and an a codeword length. An accumulator (31, 33) accumulates, modulo-8, the successive codeword lengths, producing a carry signal during any clock cycle in which eight or more bits codeword bits are accumulated. At each clock cycle, the variable-length codeword is input to the parallel inputs of a cross bar shift control circuit (30). This shift control circuit produces a 16-bit output in which the input word is embedded. The input word is shifted in the 16-bit output from the more significant bit positions to the less significant positions by a shift value determined from previous accumulated codeword lengths, with the shift value number of "0" bits being inserted in the more significant bit positions preceding the codeword. An OR circuit (38) combines the shifted variable-length codeword with previous variable-length codeword bits to form a concatenated sequence which is stored in upper and lower latches (53, 54). At any clock cycle, when the number of accumulated codeword bits is less than eight, the concatenated bits stored in the first and second latches are fed back to the OR circuit for combination at the next clock cycle with the next shifted variable-length codeword. When eight or more codeword bits are accumulated, the accumulator produces a carry signal and the 8-bit segment in the upper latch is outputted. The 8-bits in the lower latch are then shifted to the more significant bit positions of a concatenated sequence that is fed back to the OR circuit for combination with the next shifted variable-length codeword.
Abstract:
Method and system for high order conditional entropy coding utilizing an incremental-tree-extension technique to design a conditional tree for the coding. For complexity reduction, code table reduction and non-uniform quantization of conditioning symbols or pixels is provided. A pattern matching technique is provided for fast conditioning state extraction, and a multistage pipelined structure is provided to handle the case of a large number of conditioning pixels. Using the complexity reduction techniques and the hardware structures, it is possible to implement practical high order conditional entropy codecs using current low-cost VLSI (Very Large Scale Integration) technology.
Abstract:
A method for making an anode active material is described. The anode active material includes a phosphorus composite material. In the method, a solid-state red phosphorus and a porous conductive carbon material are provided. The solid-state red phosphorus and the porous conductive carbon material are spaced disposed in a vessel and the vessel is sealed. The solid-state red phosphorus is sublimed by heating the vessel to make the sublimed red phosphorus diffused in the porous conductive carbon material. The sublimed red phosphorus is condensed. The condensed red phosphorus adsorbs in the porous conductive carbon material to form the phosphorus composite material.
Abstract:
A communication apparatus is provided. The communications apparatus includes multiple radio modules and a manager. Each of the radio modules is arranged to provide a predetermined wireless communications service in compliance with a predetermined protocol. The manager is arranged to handle a communication indication assessment procedure of the radio modules to obtain an assessment result. The communication indication assessment procedure is performed by at least one of the radio modules, and the assessment result is shared with all of the radio modules.