Abstract:
Heteromeric taste receptors are provided. These receptors comprise a first polypeptide which comprises extracellular and transmembrane domains wherein the transmembrane domains are at least 95% identical to the transmembrane domains of specific T1R2 polypeptides, and the extracellular domains are at least 95% identical to the corresponding extracellular domains of the specific T1R2 polypeptide or a different GPCR; and a second polypeptide which comprises extracellular and transmembrane domains wherein the transmembrane domains are at least 95% identical to the transmembrane domains of specific T1R3 polypeptides, and the extracellular domains are at least 95% identical to the corresponding extracellular domains of the specific T1R3 polypeptide or that of a different GPCR.
Abstract:
Methods for identifying compounds that modulate the T1R1/T1R3 umami taste receptors are provided. These methods comprise screening for compounds that compete with lactisole for binding to and/or inhibiting the T1R1/T1R3 umami taste receptor.
Abstract:
Methods of quantifying the taste of compounds for food and beverages are provided. These methods comprise contacting the compounds with an isolated heteromeric receptor comprising at least one T1R2 polypeptide and at least one T1R3 polypeptide.
Abstract:
Newly identified mammalian taste-cell-specific G protein-coupled receptors which function as hetero-oligomeric complexes in the sweet taste transduction pathway, and the genes and cDNA encoding said receptors are described. Specifically, T1R G protein-coupled receptors active in sweet taste signaling as hetero-oligomeric complexes, and the genes and cDNA encoding the same, are described, along with methods for isolating such genes and for isolating and expressing such receptors. Methods for identifying putative taste modulating compounds using such hetero-oligomeric complexes also described, as is a novel surface expression facilitating peptide useful for targeting integral plasma membrane proteins to the surface of a cell.
Abstract:
The present invention relates to the discovery that the T1R receptors assemble to form functional taste receptors. Particularly, it has been discovered that co-expression of T1R1 and T1R3 results in a taste receptor that responds to umami taste stimuli, including monosodium glutamate. Also, it has been discovered that co-expression of the T1R2 and T1R3 receptors results in a taste receptor that responds to sweet taste stimuli including naturally occurring and artificial sweeteners.Also the present invention relates to the use of hetero-oligomeric taste receptors comprising T1R1/T1R3 and T1R2/T1R3 in assays to identify compounds that respectively respond to umami taste stimuli and sweet taste stimuli.Further, the invention relates to the constitutive of cell lines that stably or transiently co-express a combination of T1R1 and T1R3; or T1R2 and T1R3; under constitutive or inducible conditions. The use of these cells lines in cell-based assays to identify umami and sweet taste modulatory compounds is also provided, particularly high throughput screening assays that detect receptor activity by use of fluorometric imaging.Finally, the invention relates to the discovery that some compounds, e.g., lactisole, inhibit both the activities of human T1R2/T1R3 and T1R1/T1R3 receptors, and accordingly the sweet and umami taste, suggesting that these receptors may be the only sweet and umami receptors.
Abstract:
The present invention relates to the discovery that the T1R receptors assemble to form functional taste receptors. Particularly, it has been discovered that co-expression of T1R1 and T1R3 results in a taste receptor that responds to umami taste stimuli, including monosodium glutamate. Also, it has been discovered that co-expression of the T1R2 and T1R3 receptors results in a taste receptor that responds to sweet taste stimuli including naturally occurring and artificial sweeteners.Also the present invention relates to the use of hetero-oligomeric taste receptors comprising T1R1/T1R3 and T1R2/T1R3 in assays to identify compounds that respectively respond to umami taste stimuli and sweet taste stimuli.Further, the invention relates to the constitutive of cell lines that stably or transiently co-express a combination of T1R1 and T1R3; or T1R2 and T1R3; under constitutive or inducible conditions. The use of these cells lines in cell-based assays to identify umami and sweet taste modulatory compounds is also provided, particularly high throughput screening assays that detect receptor activity by use of fluorometric imaging.Finally, the invention relates to the discovery that some compounds, e.g., lactisole, inhibit both the activities of human T1R2/T1R3 and T1R1/T1R3 receptors, and accordingly the sweet and umami taste, suggesting that these receptors may be the only sweet and umami receptors.
Abstract:
Cells are engineered to stably or transiently express T1R2 and T1R3 polypeptides, desirably in association with a G protein. The resultant heteromeric taste receptor is a sweet taste receptor and responds to sweet taste stimuli such as artificial and natural sweeteners, e.g., saccharin. The invention provides a preferred mammalian cell lines, e.g., HEK-293 cells that stably express T1R2/T1R3 and Gα15 under inducible conditions. These cells are useful in cell-based assays for identifying compounds that elicit or modulate sweet taste.
Abstract:
Nucleic acid sequences encoding novel splice variants that encode subunits of an ENaC expressed in human taste tissue are provided. These splice variants when expressed in association with other ENaC subunits, i.e., α, β and γ subunits or α, β and Δ subunits may be used to produce amiloride-insensitive ENACs. The resultant amiloride-insensitive ENaCs are useful in in vitro assays for identifying ENaC modulators that modulate taste (enhance or inhibit), particularly human salty taste.
Abstract:
Functional assays for identifying compounds that activate or modulate the activation of the T1R1/T1R3 (umami) taste receptor are provided. These assays detect the effect of one or more compounds on the activation of T1R1/T1R3 (umami) taste receptor or on the activation of T1R1/T1R3 umami taste receptor by another compound e.g., monosodium glutamate, lactisole, or another unami taste modulator. These assays preferably are cell-based functional assays and typically use cells, e.g., HEK-293 cells that express a G protein such as Gα15, Gα16 or gustducin. Compounds identified in the disclosed functional assays are potentially useful as flavor additives in compositions for human or animal consumption.
Abstract:
Newly identified mammalian taste-cell-specific G protein-coupled receptors which function as hetero-oligomeric complexes in the sweet taste transduction pathway, and the genes and cDNA encoding said receptors are described. Specifically, T1R G protein-coupled receptors active in sweet taste signaling as hetero-oligomeric complexes, and the genes and cDNA encoding the same, are described, along with methods for isolating such genes and for isolating and expressing such receptors. Methods for identifying putative taste modulating compounds using such hetero-oligomeric complexes also described, as is a novel surface expression facilitating peptide useful for targeting integral plasma membrane proteins to the surface of a cell.