Abstract:
An improved process for the production of maleic anhydride by the catalytic oxidation of n-butane. Maleic anhydride is produced by reacting n-butane gas with oxygen gas or an oxygen-containing gas, in the presence of a vanadium phosphorus oxide catalyst. A trialkyl phosphite or trialkyl phosphate component is continuously added to the gases in an amount of from about 0.5 ppm to about 4 ppm by weight of elemental phosphorus in the trialkyl phosphate or trialkyl phosphite component. Heat is applied to the gases at a temperature of from about 400° C. to about 440° C. while maintaining a maximum temperature of gases present in the reaction of about 480° C. A simultaneous conversion of n-butane to maleic anhydride of about 84% or more and a conversion of n-butane to by-product acrylic acid of about 1.5% or less is achieved.
Abstract:
The invention is directed to a catalyst for the epoxidation of an olefin to an olefin oxide, the catalyst comprising a support having at least two pore size distributions, each pore size distribution possessing a different mean pore size and a different pore size of maximum concentration, the catalyst further comprising a catalytically effective amount of silver, a promoting amount of rhenium, and a promoting amount of one or more alkali metals, wherein the at least two pore size distributions are within a pore size range of about 0.01 μm to about 50 μm. The invention is also directed to a process for the oxidation of an olefin to an olefin oxide using the above-described catalyst.
Abstract:
This invention relates to an improved process for preparing silver catalysts useful for the vapor phase production of ethylene oxide from ethylene and oxygen. An inert support is impregnated with a solution of a catalytically effective amount of a silver containing compound, a promoting amount of an alkali metal containing compound, and a promoting amount of a transition metal containing compound. The impregnated support is calcined by heating at a temperature of from about 200° C. to about 600° C. to convert the silver in the silver containing compound to metallic silver and to decompose and remove substantially all organic materials. The heating is conducted under an atmosphere comprising a combination of an inert gas and from about 10 ppm to about 5% by volume of a gas of an oxygen containing oxidizing component.
Abstract:
A silver catalyst for ethylene oxidation to ethylene oxide is provided containing a promoter combination consisting of an alkali metal component, a sulfur component, a germanium or tin component, and a fluorine component the catalyst being essentially free of rhenium and transition metal compounds.
Abstract:
A silver catalyst for ethylene oxidation to ethylene oxide is provided containing a promoter combination consisting of an alkali metal component, a sulfur component, a germanium or tin component, and a fluorine component the catalyst being essentially free of rhenium and transition metal compounds.
Abstract:
An improved silver catalyst for the oxidation of ethylene with molecular oxygen is made by impregnating a porous support with a silver salt of an acid; subjecting the impregnated support to a multi-stage activation in an atmosphere containing less oxygen than air by heating at a first temperature in the range of 150.degree. to 200.degree. C. for less than an hour, heating at a second temperature in the range of from greater than 200.degree. C. to 300.degree. C. for less than one hour, heating at a third temperature in the range of from greater than 300.degree. C. to 400.degree. C. for less than one hour and finally heating at a fourth temperature in the range of from greater than 400.degree. C. to 500.degree. C.; and post impregnating the support with an alkali metal, preferably cesium, from an anhydrous alcohol solution followed by washing with alcohol solvent and rapid drying to produce a finished catalyst having from 1-6.times.10.sup.-3 gew of the alkali metal per kg of catalyst.
Abstract:
Butane is oxidized with molecular oxygen in a dilute state by bringing a mixture of vaporized butane and air of controlled butane content into the presence of a contact vanadium-phosphorus-oxygen catalyst in a first oxidation zone under controlled pressure and temperature conditions, cooling the gaseous effluent from the first oxidation zone to a temperature in the range of 50.degree. to 300.degree. C., introducing a controlled amount of butane into the cooled gaseous effluent from the first oxidation zone, introducing said cooled butane-enriched stream into the second oxidation zone, and bringing the thus butane-enriched mixture into contact with a vanadium-phosphorus-oxygen catalyst disposed in the second zone.
Abstract:
Reticulated ceramic or metal substrate coated with cobalt compounds, noble metals or mixtures thereof, are superior catalysts for the oxidation of ammonia to produce nitric oxide.
Abstract:
Reticulated ceramic or metal substrate coated with Cobalt compounds, noble metals or mixtures thereof are superior catalysts for the oxidation of ammonia to produce nitric oxide.
Abstract:
An improvement in the oxidation catalyst used for the partial oxidation of n-butane and containing vanadium and phosphorus, zinc and lithium mixed oxides which comprises adding a molybdenum compound modifier in an amount of from about 0.005 to 0.025/1 Mo/V to the catalyst during the digestion of the reduced vanadium compound by concentrated phosphoric acid. The addition of Mo produces a catalyst which is very stable more active system and longer lived than the unmodified catalyst.