Abstract:
Methods and apparatus related to peer to peer communication networks are described. Embodiments directed to methods and apparatus for establishing traffic data transmission rates and/or transmission power levels between wireless terminals is described. Embodiments direct to methods and apparatus of making decisions whether or not to transmit as a function of the received power of the received response signals are also described. Transmission of pilot signals after granting of a transmission request and a decision to transmit traffic data has been made occurs in some embodiments. Rate information to be used in determining a traffic rate may be received in response to the pilot signal from a peer to peer (P2P) device.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided in connection with communication of safety messages by a device on behalf of other devices in a group. In an example, a communications device is equipped to receive attribute information from one or more UEs in a group of UEs, generate group attribute information based on the received attribute information, and broadcast the group attribute information on behalf of the group of UEs. In such an aspect, the communications device is a member of the group of UEs, and the leader of the group of UEs. In another example, a communications device is equipped to transmit, by a UE, attribute information to a leader UE of a group of UEs, and prohibit broadcasting at least a portion of the attribute information. In such an aspect, the communications device is a member of the group of UEs.
Abstract:
Methods, systems, and devices are described for improving communications of a machine type communications (MTC) device. In a method of communication, a signal to interference noise ratio (SINR) of one or more resource blocks (RBs) of a target device may be estimated by, for example, an MTC device. The MTC device may then select one or more of the RBs of the target device to be in a resource pool based at least in part on the estimated SINR. In some embodiments, the MTC device may compare the estimated SINR of the one or more RBs of the target device to a threshold SINR and select one or more RBs with an SINR less than the threshold SINR to be in the resource pool. In some embodiments, the MTC device may randomly select a resource block from the resource pool and transmit on the selected resource block.
Abstract:
A femto base station (BS) maintains two different timings: a femto BS downlink timing and a femto BS uplink timing. A femto base station's uplink reference timing is based on the macro uplink timing being used by one or more UE devices in the local vicinity of the femto BS. In some embodiments, the femto BS synchronizes its femto uplink timing to the macro uplink timing being used by the closest UE device transmitting uplink signals to the macro BS. In other embodiments, the femto BS determines its femto base station uplink timing based on one or more uplink signals from UE devices in its vicinity transmitting to the macro BS. In various embodiments, femto cell uplink signals and macro cell uplink signals are received at a femto cell BS in synchronization. This approach facilitates frequency division multiplexing (FDM) in the uplink between a macro cell and a femto cell.
Abstract:
Various embodiments relate to using available spectrum for peer to peer communications and for selecting which of several possibly available channels should be used. Various methods and apparatus are well suited to peer to peer networks in which channel usage decisions are made in a decentralized manner. A wireless terminal generates a list of potential available channels to be used for peer to peer communications, e.g., based on FCC information and/or local sensing. Channels are filled in accordance with a predetermined channel ordering. A wireless terminal migrates between the channels in accordance with changes in the number of peer devices using a channel. The network, in a distributed manner, changes the number of channels in use at a location in response to changes in numbers of active peer devices at a location.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided in connection with enabling distributed frequency synchronization based on a fastest node clock rate. In one example, a first UE is equipped to determine that a fastest clock rate is faster than an internal clock rate of the first UE by more than a first positive offset, and adjust the internal clock rate based on the determined fastest clock rate. In an aspect, the fastest clock rate is associated with a second UE of one or more other UEs from which synchronization signals may be received. In another example, a UE is equipped to obtain GPS based timing information, adjust an internal clock rate based on the GPS based timing information, and transmit a synchronization signal at an artificially earlier time in comparison to a scheduled time of transmission associated with the adjusted internal clock rate.
Abstract:
Methods, systems, and devices are described for managing wireless communications. In one method, a mobile device may determine to transition to a relay status. The relay status may indicate a capability of the mobile device to function as a relay device between at least one other mobile device and a base station. A peer discovery signal that indicates the relay status may then be transmitted. In another method, a mobile device may broadcast an out-of-coverage status indicator in a first peer discovery signal. A second peer discovery signal may be received from at least one other mobile device. The second peer discovery signal may indicate a capability of the at least one other mobile device to function as a relay device.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. The apparatus receives indication of a transmission scheme for decoding multicast/broadcast data transmitted from a sender, receives a reservation signal for the multicast/broadcast data from the sender, determines whether the receiver is capable of decoding the multicast/broadcast data at the indicated transmission scheme, and transmits a confirmation signal for the multicast/broadcast data to the sender after determining that the receiver is capable of decoding the multicast/broadcast data at the indicated transmission scheme. The apparatus receives the multicast/broadcast data according to the transmission scheme after the confirmation signal is transmitted. Alternatively, the apparatus suppresses transmission of the confirmation signal when it is determined that the receiver is not capable of decoding the multicast/broadcast data at the indicated transmission scheme.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided in connection with D2D relay link selection in a LTE based access network. In one example, a communications device is equipped to determine that the communications device (e.g., a UE) is able to establish a relay link with a candidate UE based on at least one of information associated with any preexisting access links with the candidate UE, information associated with any preexisting accessing links within a threshold vicinity of the UE or the candidate UE, or any other UE UL interference, determine that the candidate UE is able to support the relay link based on information associated with preexisting access links for the candidate UE, and perform a link establishment process for the relay link with the candidate UE based on the determinations.
Abstract:
Methods and apparatus that facilitate handover related measurements and decision making in a communications system including user equipment (UE) devices, a macro base station and femto base stations (femtocells) are described. In some embodiments a UE device transmits pilots along with identification information using UE device selected transmission resources from a set of recurring UE pilot transmission resources dedicated by a macro base station for UE pilot signal and related device information transmission purposes. Femto base stations measure the UE transmitted pilot signals and report the signal strength measurement results and corresponding device identifiers to a handoff decision control entity, e.g., an eNodeB or control node, which makes handover decisions. By relying on UE transmitted pilots measured by multiple base stations, e.g., femto base stations, the need for femto cells to transmit pilots can be reduced while well informed UE handoff decisions still being possible.