Abstract:
A novel variation of Michelson's interferometer uses tilt- and shear-compensation optics to allow various mirror motions to produce variation of path difference. The tilt-compensation mechanism consists of two complementary reflections from a single plane mirror to produce a beam having a constant angle of propagation, typically the same as the input beam. Using a retroreflector to invert the image of the single plane mirror before the second reflection produces the complementary reflections. A particularly efficient embodiment of the present invention uses a balanced disk-shaped mirror to effect very rapid variation of path difference by nutation or precession. Other advantages of tilt-compensation include photometric stability. This interferometer has applications in spectrometry, spectral imaging and metrology.
Abstract:
A bearing for allowing the movement of a movable mirror in a Michelson interferometer includes a stationary hollow glass cylinder and a movable assembly which includes the movable mirror and at least one graphite member, the graphite member being slidably disposed within the bore of the glass cylinder. Preferably, there is an anti-rotation system for the movable assembly which includes a post coupled with the movable assembly, a magnet mounted on one end of the post and a stationary guide rail positioned substantially parallel to the axis of rotation of the movable assembly and at a predetermined radial distance from the movable assembly.
Abstract:
An interferometer that may be used in an infrared spectrometer has a housing with a fixed mirror, a perpendicular moving mirror, and a beamsplitter diagonally between them. A moving bearing is mounted to a stationary bearing for translation back and forth along a longitudinal axis, and the moving mirror is mounted to a support member which itself is mounted to the moving bearing to allow pivoting of the mirror support member about a pivot point. A permanent magnet is mounted to the support member and extends along the longitudinal axis, with one of the poles of the magnet formed at the free end of the magnet along the longitudinal axis. A main magnet coil mounted to the housing has an inner bore which extends around the free end of the permanent magnet such that current supplied to the main coil attracts or repels the magnet to drive the moving bearing and the moving mirror in translation back and forth along the longitudinal axis. Side coils are mounted adjacent to the main coil perpendicular to each other to provide magnetic fields in orthogonal directions to the pole at the free end of the permanent magnet, to selectively apply torque to the support member about its pivot point and pivot the face of the moving mirror. The longitudinal position and the deflection of the face of the moving mirror from a perpendicular can be detected and controlled by control of current supplied to the coils.
Abstract:
In order to improve the accuracy of the absolute value of a wavelength of diffraction light in a diffraction grating, a gas absorption line resulting from an absorption cell 8 is used as a wavelength reference 8. When reference light is exited from a light source 7 in a wavelength reference light source 1, the reference light is transmitted to a diffraction grating 2 as transmitted light having a spectrum absorbing only light of a predetermined wavelength by the absorption cell 8 to allow it to be reciprocated in a predetermined angle range. The diffraction grating 2 produces a split light beam from the transmitted light from the absorption cell 8. The diffraction grating 2 splits the transmitted light from the absorption cell 8 to provide diffracted light and the diffracted light from the diffraction grating 2 is received by the reference light receiving unit 3. It is possible to, without being affected by a variation in the environmental condition, accurately know the rotation angle of the diffracting grating 2 from the diffracted light of the absorption line-existing waveform component received by the reference light receiving unit 3, that is, the rotation angle of the diffraction grating 2 at a wavelength at that time.
Abstract:
An optical spectrum measuring apparatus is disclosed that is able to take measurements at high speed. An encoder is connected to the rotational axis of a motor. A counter counts the number of pulses outputted from the encoder 14. A comparator, that is connected to the counter and a register, compares a value stored in the counter with a value stored in the register set by a control section, and outputs an AD conversion signal when the values are equal. The control section sets the register with a value corresponding to a first measurement point and rotates a diffraction grating at a constant speed from an angle corresponding to a measurement initiation wavelength to an angle corresponding to a measurement termination wavelength. An AD conversion signal is outputted from the comparator when a measurement point is reached, then the control section sets the register to a value corresponding to the next measurement point.
Abstract:
A wavelength-scanning mechanism for a spectrometer utilizes an eccentric disc cam driven by a pulse motor to pivot a diffraction grating with a contact bar fixed thereto. A light source supplies light to the mechanism with a first concave spherical mirror reflecting light to the diffraction grating and reflecting light reflected by the diffraction grating to a zero-order light detector. A second concave spherical mirror reflects light diffracted by the diffraction grating to a diffracted light detector. A controller receives information from the light detectors and controls the pulse motor. At least one cam follower is mounted on the cam at a position eccentric from the rotational axis thereof and slidably contacts the contact bar. Alternatively, the diffraction grating has two contact bars fixed thereto, and the cam follower is pivoted between the contact bars. A method of utilizing the mechanism first determines a center value of zero-order light reflected by the diffraction grating by pivoting the diffraction grating in steps between the time zero-order light is detected until it is no longer detected. The number of steps is divided by two, which yields the center value. Diffracted light is detected at the center value, and the spectral intensity of the detected diffracted light is calculated.
Abstract:
A robust spectrophotometer (also known as a color spectrometer or colorimeter) is self contained in a housing which is adapted to be held-held and has all of the electrical, optical and electro optic elements mounted on a board captured within the housing at one end of which light from a sample is restricted to an object area and projected after being dispersed spectrally, as with a reflection grating, to an image area at a photodetector via a lens which has an optical axis and converges the dispersed light at the image area. The dispersive element is mounted on an arm having a pivot laterally offset from the dispersive element's surface where a diverging beam of light from the object area is incident and is deflected to the image area. The geometry is such that the dispersive element may be rotated to a position where the beam is specularly deflected (zeroth order diffraction), and the spectrometer calibrated when the dispersive element is in the specular reflection/deflection position. The path from the object area is approximately perpendicular to the optical axis, and then is folded by mirrors to direct the beam to incidence on the dispersive element, from which the beam is deflected and focused by the lens, the focal length of which is such that the image and object areas are in conjugate relationship. Radiant or electroluminescent sources, for example, the screen of a CRT monitor, can directly illuminate the object area. A pivotal foot on the housing having an aperture may be used to facilitate alignment of the sample with the entrance opening to the housing of the spectrophotometer.
Abstract:
A multi-slit type spectrometer includes a light diffracter which diffracts an incident light according to wavelengths; an optical shutter array member including a plurality of optical shutter elements arranged in correspondence with wavelength bands diffracted by the light diffracter, operable to transmit an incident ray according to an applied voltage, and made of PLZT. A zone of a given number of adjacent optical shutter elements is applied with a voltage corresponding to the wavelength bands of the rays incident upon the zone of adjacent optical shutter elements at a specified timing so that the rays respectively pass through or are reflected at the optical shutter elements. A signal processor receives the ray which has passed through or has been reflected at each optical shutter element and outputs an electrical signal according to the intensity of the received ray. A calculator calculates the intensity of the incident ray for each wavelength band in accordance with the electrical signal output from the signal processor and the specified applying timing.
Abstract:
A multistage interconnect network (MIN) capable of supporting massive parallel processing, including point-to-point and multicast communications between processor modules (PMs) which are connected to the input and output ports of the network. The network is built using interconnected switch nodes arranged in 2 log.sub.b N stages, wherein b is the number of switch node input/output ports, N is the number of network input/output ports and log.sub.b N indicates a ceiling function providing the smallest integer not less than log.sub.b N. The additional stages provide additional paths between network input ports and network output ports, thereby enhancing fault tolerance and lessening contention.
Abstract:
A multi-slit type spectrometer includes a diffractor by which an incident light is diffracted according to wavelengths; an optical shutter array member including a plurality of optical shutter elements arranged in correspondence with wavelength bands diffracted by the diffractor, operable to transmit an incident ray according to an applied voltage, and made of PLZT. Each optical shutter element is applied with a voltage corresponding to the band of the ray incident upon the optical shutter element at a specified timing so that the ray passes through the optical shutter element. The spectrometer further includes a photosensor to convert the ray passed through the optical shutter element to an electrical signal, and a calculator to calculate the intensity of the incident ray for each band in accordance with the electrical signal output from the photosensor and the specified applying timing.