Abstract:
Various aspects described herein relate to managing a soft buffer for decoding hybrid automatic repeat/request (HARQ) based transmissions in wireless communications. A legacy soft buffer size of a legacy soft buffer can be determined for decoding HARQ based transmissions in legacy communications, where the legacy communications are based on a first transmission time interval (TTI) of a first duration. Ultra low latency (ULL) communications can be received, where the ULL communications are based on a second TTI that is less than the first duration. A ULL soft buffer size for a ULL soft buffer for decoding HARQ based transmissions in the ULL communications can be determined. Contents of the ULL soft buffer can be managed based at least in part on the ULL soft buffer size
Abstract:
A method of wireless communications includes adapting to downlink/uplink resource allocations. In particular, the downlink/uplink communications may be adjusted according to time division duplexed (TDD) configurations of serving and neighbor cells.
Abstract:
Certain aspects relate to methods and apparatus for latency reduction for UEs in a RRC connected mode. During contention-based uplink access by groups of UEs within a subframe, an eNB may decode the received uplink transmission based, at least in part, on the assigned group of resources assigned to the UE and used for transmission. Additional orthogonalization techniques such as reduced TTI size can be used to reduce collisions among different users performing contention-based transmissions. Furthermore, when the eNB fails to successfully decode the uplink transmission, the eNB may identify the UE that sent the uplink transmission based on a detected reference signal and may transmit an uplink assignment to the identified UE.
Abstract:
Various aspects described herein relate to rate matching around reference signaling. A discovery reference signal (DRS) configuration is received that identifies first resources related to non-zero power reference signals for DRS transmitted by a cell over a first bandwidth and second resources related to zero power reference signals for the DRS over a second bandwidth. The first bandwidth can be less than or equal to the second bandwidth. At least one channel can be received from the cell along with an instance of the non-zero power reference signals and the zero power reference signals. Rate matching can be performed for the at least one channel around the second resources over the second bandwidth.
Abstract:
Various aspects described herein relate to communicating in a wireless network. A transmission time interval (TTI) for an uplink control channel transmission within a subframe is determined, wherein the TTI comprises of a number of symbols which are a subset of a plurality of symbols in the subframe. Uplink control data can be transmitted over the uplink control channel during the TTI.
Abstract:
Aspects described herein relate to communicating feedback in a wireless network. An indication to communicate feedback for a plurality of subframes to an access network node can be received from the access network node. A plurality of process identifiers related to transport blocks received in the plurality of subframes can be determined. Feedback for the plurality of process identifiers received in the plurality of subframes can be grouped, and the grouped feedback and/or a feedback tag indicative of the plurality of subframes can be transmitted to the access network node.
Abstract:
In certain circumstances, the uplink resources (e.g., overhead) used for transmission of the UL DM-RS may be excessive, consuming an unnecessary amount of the available uplink spectrum. While there is a balance between the number of DM-RS and the reliability of the shared data channel, reduction of the UL DM-RS overhead may enable the UE to increase the number of transmissions in a UL subframes. Various DM-RS reduction techniques discussed include reducing the number of UL DM-RS generally, per resource block, or per pairs of resource units, and accommodating transmission of uplink control channel information when UL DM-RS is reduced. Further disclosed techniques relate to adjusting the number of UCI in the uplink shared channel.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. In an aspect, the apparatus may determine whether a starting symbol of an enhanced physical downlink control channel (EPDCCH) is an initial symbol in a subframe based on an EPDCCH configuration. Based on the determination, the apparatus may refrain from decoding a subset of legacy control channels in the subframe when the starting symbol of the EPDCCH is the initial symbol in the subframe. The legacy control channel may comprise at least one of a physical control format indicator channel (PCFICH), a physical hybrid-ARQ indicator channel (PHICH), or a combination thereof.
Abstract:
Certain aspects of the present disclosure relate to techniques and apparatus for signaling interference management information, such as network assisted interference cancelation (NAIC) information as downlink control information (DCI). According to certain aspects, a method is provided for wireless communications by an interfering or potentially interfering base station. The method generally includes generating information for use by a user equipment (UE) in performing interference mitigation when processing a signal from a serving base station and transmitting the information to the UE. The method may further include generating an indication of how the interfering or potentially interfering base station transmits the information and how one or more cells transmit information for use by the UE in performing interference mitigation when processing a signal from the serving base station and transmitting the indication to the UE.
Abstract:
Certain aspects of the present disclosure provide techniques for controlling transmission power in shared radio frequency spectrum (SRFS). According to techniques, devices (e.g., BSs, UEs, etc.) transmitting in SRFS band may win contention to the SRFS band for at least a portion of a radio frame period. For example, the radio frame period may include a plurality of subframe periods. The devices may also transmit a first signal at a first transmit power during a first subframe period of the radio frame period and transmit a second signal at a second transmit power during a second subframe period of the radio frame period. For example, the first transmit power and second transmit power may be controlled based, at least in part, on a power level determined for the radio frame period.