Abstract:
A large diameter duct structure is adapted for vertical disposition in an ocean. An elongate tensile core assembly is adapted to be supported at one end, as from a floating platform, and to extend downwardly a desired distance. A plurality of duct wall sections, each of selected length, are alignable in serial order to define a tubular assembly having a diameter substantially greater than that of the core. Support means are engageable with the core at selected locations along the core and with the wall sections. The support means support the wall section substantially concentrically about the core and secure the wall sections from movement relatively along the core. Seals are engageable between the ends of adjacent wall sections disposed about and along the core, and define substantially liquid-tight connections between the wall sections. When the several wall sections are serially disposed along the core and are supported on the core with the seals engaged between adjacent wall sections, the result is a fluid flow duct of large diameter in which the weight of the duct is supported by the core which is loaded in tension below its upper end.
Abstract:
Described is an ocean thermal energy conversion system wherein floating, submerged and fixed drilling platforms installed offshore primarily for exploration and/or production of hydrocarbons serve also as working and supportive bases for means for producing electricity by the adiabatic expansion of hydrocarbon gases which are thereby cooled. The cooled gases are then heated by contact with the solar heated surface layers of water and thermally expand thereby actuating a turbine and an electricity producing generator. Pipelines usually installed for the transmission of gases and crude oil to the shore are used dually by running electric cables with them to bring the electricity produced by the system to on-shore consuming or storage facilities. The system also includes means for increasing the surface water temperature such as insulated pipes bringing heat-containing effluent streams from on-shore treating plants.
Abstract:
A dynamic positioning system for a sea-going vessel containing an ocean thermal energy conversion (OTEC) system utilizes the thrust produced by the sea water effluents resulting from the energy conversion process to position the vessel against wind and ocean current forces. In one preferred embodiment applicable to both cylindrical surface and spar buoy types of vessels, both the warm water and cold water discharges are collected in a common annular plenum and then discharged through nozzles spaced angularly around the periphery of the plenum. Each nozzle is rotatable through a 90.degree. arc in a vertical plane to alter the direction of the discharge water jet and thereby to alter the horizontal component of the thrust or the driving force acting upon the vessel. The nozzles may be selected as to location and angular orientation to attain the net resultant force vector necessary to provide station-keeping or propulsion to the vessel under most any combination of wind and ocean current conditions.
Abstract:
A submersible water desalination apparatus includes a plurality of water separation membrane elements, a product water collector that receives product water from the membrane elements, and a variable output motorized submersible pump having a suction side that receives product water from the product water collector and a discharge side that pumps product water away from the apparatus through a product water conduit for surface or subsurface use. At least a portion of the product water is used to cool the motor.
Abstract:
A long-endurance self-powered ocean buoy includes a buoy body, a power generation device and a gas bag base; the power generation device is mounted at a lower end of the gas bag base and includes a housing, a first power generation assembly, a second power generation assembly and a storage battery; the first power generation assembly includes a plurality of mutually-communicated gas chambers, hydraulic bags and control integration units. The lowest gas chamber is filled with a volatile working medium which can generate gas pressure by volatilization to drive power generation fans in turbines on a vent pipe communicating adjacent gas chambers for power generation. The second power generation assembly includes a plurality of temperature difference energy modules with one end surrounded by a phase change material and the other end in contact with the housing, so as to increase the power generation efficiency.
Abstract:
An offshore power generation structure comprising a submerged portion having a first deck portion comprising an integral multi-stage evaporator system, a second deck portion comprising an integral multi-stage condensing system, a third deck portion housing power generation equipment, cold water pipe; and a cold water pipe connection.
Abstract:
A system for the generation of mechanical or electrical energy from heat energy, where increasing a height or pressure in a liquid chamber of the system containing a liquid increases an efficiency of the system up to a hundred percent or increases such efficiency until a critical temperature or pressure of the vapor (gas) is reached at the bottom of liquid chamber or in the boiler of the system depending upon the increment in height, pressure and the type of liquid used in the system. An increase in height of the system for such increased efficiency can be adjusted to a smaller height by maintaining a series of liquid and gas chambers where the vapor flows through the series of chambers or by adding pressure valves. The heat energy from high to low temperature sources can be convened to mechanical and electrical energy.
Abstract:
An energy collection apparatus includes an upper body and a lower body. The upper body has a first storage compartment, and is arranged to connect to an external energy generator. The lower body downwardly extends from the upper body, and has a second storage compartment. The energy collection apparatus is securely supported in a deep sea level above seabed so that when sea water enters the first storage compartment and the second storage compartment, geothermal energy and pressure difference between the sea water in the first storage compartment and the second storage compartment create upthrust steam at a top portion of the first storage compartment, the upthrust steam being guided to reach the external energy generator for further use.
Abstract:
A deep ocean water extraction apparatus has a collection pool having an outer shell with a maximum diameter, a lesser diameter at a mostly closed bottom, and an open top of a diameter smaller than the maximum diameter, outflow tubes with pumps extending horizontally from an opening through a side wall of the shell, an opening through the bottom covered by a rigid disk having a plurality of tube openings through which descending collection tubes of common length are connected, and flotation elements attached to the descending collection tubes at a plurality of points spaced down the depth of the collection tubes. The apparatus is characterized in that water is pumped out of the collection pool, and common pressure on the surfaces of the collection pool and the surrounding ocean water, causes water to flow up the collection tubes into the collection pool.
Abstract:
An offshore power generation structure comprising a submerged portion having a first deck portion comprising an integral multi-stage evaporator system, a second deck portion comprising an integral multi-stage condensing system, a third deck portion housing power generation equipment, cold water pipe; and a cold water pipe connection.