Abstract:
A method and apparatus for designing a screw-tightening element are disclosed for designing the screw-tightening element (mechanical element). The design method comprises representing material characteristics of the screw component with factors including at least one of an elastic limit, an endurance strength, a true breaking power and a tension strength, representing a material characteristic of the tightening object with a factor including an elastic limit, providing a plurality of damage patterns associated with the material characteristics of the screw component and the tightening object, and calculating tolerance values of fluctuating loads in the plurality of damage patterns based on the material characteristics of the screw-tightening element and the elastic limit of the tightening object. The tolerance values of fluctuating loads are compared to determine an optimum tolerance load for the screw-tightening element.
Abstract:
A hybrid fastening system comprising a female fastener component, i.e., swage collar, fabricated from a titanium or titanium-alloy material, preferably Ti-3A1-2.5V, and a mating titanium or titanium-alloy material male fastener component, i.e., threaded pin, each preferably pre-coated with an organic coating material comprising an organic, phenolic resin. The threaded pin component is installed through two or more structural components to be joined. The swage collar component is then deformed or swaged onto the threads of the pre-coated threaded pin component to achieve the same, if not improved, fastener/joint performance characteristics of existing lockbolt systems using aluminum-alloy material swage collar components.
Abstract:
A corrosion-resistant, headed fastener, such as a nail for exterior applications, is made from a carbon steel wire pre-coated with a protective, metallic layer having corrosion-resistant properties, the protective, metallic layer being discontinuous at a region on a leading end of the pre-coated wire. After at least part of a protective, metallic cap having corrosion-resistant properties is disposed near the leading end of the pre-coated wire, at least part of the protective, metallic cap is welded to the leading end of the pre-coated wire, so as to cover the region where the protective, metallic layer is discontinuous, by impact welding, as the fastener is formed from the precoated wire in such a manner that the fastener is formed with a shank and with a head, which is formed by deformation of the leading end of the pre-coated wire. The welded part of the protective, metallic cap provides the fastener with corrosion resistance at the region where the protective, metallic layer is discontinuous, and the protective, metallic layer provides the remaining portions of the fastener with corrosion resistance. The protective, metallic layer is made from chromium, nickel, zinc, aluminum, or an alloy comprising zinc and aluminum, preferably from zinc or such an alloy. The protective, metallic cap is made from chromium, nickel, zinc, aluminum, or an alloy comprising zinc and aluminum, preferably aluminum, which can be visually differentiated from zinc or such an alloy.
Abstract:
Nails suitable for outdoor use, such as, for example, roofing nails, are formed from carbon steel wire precoated with a metallic layer, which has corrosion-resistant properties, such as, for example, a zinc layer applied by pre-galvanizing the stock carbon steel wire. Each nail is formed with a shank and with a head. The metallic layer is discontinuous within a region formed upon the head of each nail. The nails are collated by means of collating wires welded to the shanks of the nails. The collated nails are coiled. The coiled nails are cleaned in a cleaning bath, such as, for example, 1,1,trichloroethane. The cleaned nails are coated with a polymeric layer, which covers the region of the head of each nail where the metallic layer is discontinuous, thus restoring the corrosion-resistant properties of the nails.