Abstract:
An electrical connector system has two connectors, one of which is included in a module mateable with the other connector in a pluggable manner. The other connector includes a body and two or more electrical contacts. The body of that electrical connector includes a spring that provides a combined lock-down force and kick-out force. The lock-down force biases the module against the other connector, thereby providing a secure electrical and mechanical connection. The kick-out force biases the module away from the other connector to separate or eject the module when a user actuates a release mechanism. The module also includes a slot that engages a projection on the other connector to promote alignment of the mating electrical contacts.
Abstract:
An electrical connector system has two connectors, one of which is included in a module mateable with the other connector in a pluggable manner. The other connector includes an elongated guide rail and a connector block in which are retained two or more electrical contacts. Signal connections can be made in a predetermined sequence when the module is plugged into the other connector because the contact pads of the module are of different lengths. For example, sequencing the connection of power and ground signals with respect to data signals provides hot-pluggability. Also, a grounding contact on the module is engaged by a spring clip on the other connector to provide an additional or alternative grounding path.
Abstract:
An electrical connection system, for example a dropside patch panel, comprises a mounting rail (12) which receives first connectors (14) arranged with their contacts facing away from the rail (12). Cable introduced between the rail and the connectors is separated into individual conductors which are terminated at contacts (34, 36) via slots (30) in the rail walls. A second connector (16) carries standard data or voice sockets communications (19) which are connected to the first connector via edge contact carrying PCBs (38) which engage in slots (40) in the first connectors. The PCB edge connectors have a discontinuity on one surface, and one half of the contact is connected to the contact on the other side of the PCB to provide a jumpered interconnection between upper (34) and lower (36) rows of contacts of the first connectors in a first position of the second connectors, and contact between the upper rows of contacts and the standard sockets (19) when the second connectors are moved further into the slots (40) to occupy a second position. The slots (40) are formed to receive the PCBs (38) from either end.
Abstract:
A method and apparatus for rapid interconnection (hot plugging) peripheral device interface circuits to a computer bus is disclosed. The interconnections are completed using three sets of conductors in the sequence: common grounds, power from the bus and data lines. The time period between the interconnections is determined by the relative set back lengths of the conductors from the card edge and allows for stabilization of voltage and establishment of a stable high impedance state for the peripheral device controller circuits before the data lines are interconnected.
Abstract:
A printed circuit board loaded with an electronic circuit and constructed to be capable of being inserted in and withdrawn from a bus line on on-line status, in which the input to or the output from the printed circuit board is locked out in response to the presence of two conditions, one is the presence of a demand for insertion or withdrawal of the printed circuit board on on-line status and the other is the presence of such a condition that no information exchange is being made between the printed circuit board and other unit connected with the bus line, thereby releasing the electrical connection between the bus line and the printed circuit board so that the printed circuit board can now be inserted in or withdrawn from the bus line on on-line status.
Abstract:
Initializing apparatus for use with circuitry mounted on a plug-in printed circuit board is described. Illustratively a telephone make-busy circuit is disclosed, which circuit automatically operates a make-busy relay on a plug-in telephone circuit when that circuit is plugged into a connector. A special "half" contact on the printed circuit board is connected to the control lead for the relay and when the circuit board is inserted into the connector, ground is momentarily applied to the contact and the relay control lead by a contact finger in the connector. The momentary ground causes the make-busy relay to operate for making the circuit appear busy to the telephone switching system. When the circuit board is fully inserted into the connector, the connector contact finger moves off the special contact on the circuit board and thereby removes the temporary ground. However, the relay remains operated by means of a circuit involving its own contacts for maintaining the circuit busy under control of a maintenance and test desk.