Abstract:
Multiple transform utilization and applications for secure digital watermarking. In one embodiment of the present invention, digital blocks in digital information to be protected are transformed into the frequency domain using a fast Fourier transform. A plurality of frequencies and associated amplitudes are identified for each of the transformed digital blocks and a subset of the identified amplitudes is selected for each of the digital blocks using a primary mask from a key. Message information is selected from a message using a transformation table generated with a convolution mask. The chosen message information is encoded into each of the transformed digital blocks by altering the selected amplitudes based on the selected message information.
Abstract:
The present invention relate generally to digital watermarking. One claim recites a method including: obtaining first data representing a first chrominance channel of a color image or video, where the first data comprises a watermark signal embedded therein; obtaining second data representing a second chrominance channel of the color image or video, the second data comprising the watermark signal embedded therein but with a signal polarity that is inversely related to the polarity of the watermark signal in the first data; combining the second data with the first data in a manner that reduces image or video interference relative to the watermark signal, said act of combining yielding third data; using at least a processor or electronic processing circuitry, processing the third data to obtain the watermark signal; and once obtained, providing information associated with the watermark signal. Of course, additional combinations and claims are provided as well.
Abstract:
The application provides a method for partitioning a watermark image with western language characters, comprising: partitioning a western language characters image along rows and columns to form a plurality of character image blocks; identifying valid character image blocks from the formed character image blocks; counting sizes of the valid character image blocks to determine if the image corresponds to a document with a large font size or a document with a small font size; dividing words in the image into a plurality of groups, wherein each divided group in the document with large font size has different numbers of words from that with small font size; and dividing equally the divided word groups into multiple portions corresponding to watermark image blocks. The application further provides a device for partitioning a watermark image with western language characters. The operability of watermark embedding process can be ensured through the above technical solution.
Abstract:
The present disclosure relates generally to data hiding for product packaging and other printed objects. One embodiment embeds an information signal in a spot color for product packaging. The spot color is screened, and overprinted with process color tint. The tint is modulated prior to overprinting with optimized signal tweaks. The optimization can include consideration of a detector spectral dependency (e.g., red and/or green illumination). Other embodiments and combinations are described in the subject patent document.
Abstract:
A system (10) for generating an incrementally completed security mark (20′″) includes a computer-readable medium encoded with a computer program. The computer program includes computer readable code for selecting a carrier object (20, 20′, 20″, 20′″); computer readable code for selecting a number of steps in a workflow associated with the carrier object (20, 20′, 20″, 20′″) and a security level for each step in the workflow; computer readable code for determining available carrier object candidate areas (T1, T2, T3, T4, T5) to which to write information at each step in the workflow; and computer readable code for determining a number of bits to be input at each step in the workflow based upon the respective security levels and the available candidate areas (T1, T2, T3, T4, T5). The system further includes memory and a processor operatively coupled to the memory and to the computer-readable medium.
Abstract:
Some implementations may include a method for watermarking an identification document, the method including: modulating a spatial luminance pattern associated with a first digital watermark to encode a first portion of personally identifiable information; modulating a spatial chrominance distribution associated with a second digital watermark to encode a second portion of the personally identifiable information; and applying the first digital watermark and the second digital watermark to the identification document.
Abstract:
Some implementations may include a method for watermarking an identification document, the method including: receiving a digitally watermarked digital facial portrait of the person, the digital facial portrait embedded with at least one digital watermark identifying payload data linking the digital facial portrait to the person portrayed in the digital facial portrait; receiving results of comparison between the digital facial portrait of the person and the person presenting the digitally watermarked digital facial portrait; retrieving the at least one digital watermark in response to receiving comparison results that the person portrayed in the digital facial portrait is the person presenting the digitally watermarked digital facial portrait; and determining that the digital facial portrait is authentic based on the retrieved at least one digital watermark.
Abstract:
Some implementations may include a computer-assisted method for authenticating a person at a point of service, the method including: receiving a digital identification document including a digital biometric of the person and a digital watermark, the digital watermark encoding personally identifiable information of the person; retrieving the digital watermark from the received digital identification document; extracting the personally identifiable information from the retrieved digital watermark; and authenticating the person identified by the digital biometric based on the retrieved digital watermark.
Abstract:
The present disclosures relates generally to digital watermarking and data hiding. One claim recites a smartphone comprising: a camera to capture video of a display that is rendering video, in which the video comprises a first watermark signal embedded in a first portion of the data, a second watermark signal embedded in a second portion of the data, and a third watermark signal embedded in a third portion of the data, in which at least two of the first watermark signal, second watermark signal and third watermark signal are inversely related to one another; electronic memory for buffering data representing captured video; one or more electronic processors programmed for: applying a first perspective distortion to the data representing the captured video to yield first perspective distorted video; and analyzing the first perspective distorted video to detect digital watermarking, in which a second perspective distortion is applied to the data representing the captured video to yield second perspective distorted video when the analyzing does not detect digital watermarking, and then performing analyzing the second perspective distorted video to detect digital watermarking. Of course, other claims are provided too.
Abstract:
A digital watermark embedding apparatus includes an interface circuit which acquires video data and digital watermark information, and a processor which embeds the digital watermark information into the video data. The processor is adapted to, for each symbol contained in the digital watermark information, set a time segment, cause the area of a watermark pattern formed by a plurality of pixels having a prescribed value, and superimposed on each image contained in the video data, to vary in periodic fashion over time in the time segment according to the value of the symbol contained in the digital watermark information, and correct, using the prescribed value, the value of each pixel contained in a region where each image in the video data and the watermark pattern corresponding to that image overlap each other.