摘要:
In one aspect of the present invention, an article including a nanostructured functional coating disposed on a substrate is described. The functional coating is characterized by both anti-reflection properties and down-converting properties. Related optoelectronic devices are also described.
摘要:
A light source device includes: a light source which emits light; an optical member through which light emitted from the light source enters; a base on which the light source is mounted; a first holding member which fixes the optical member; and a second holding member which holds the first holding member and stands on the base in the emission direction of the light emitted from the light source.
摘要:
A wavelength converting apparatus comprising: a laser resonator; a first wavelength converting element that converts a fundamental wave outputted from the laser resonator into a harmonic wave; a first temperature control element that controls the temperature of the first wavelength converting element; a second wavelength converting element that converts a fundamental wave outputted from the first wavelength converting element into a harmonic wave; a second temperature control element that controls the temperature of the second wavelength converting element; a first detecting portion that detects an output of a harmonic wave outputted from the first wavelength converting element; a second detecting portion that detects an output of a harmonic wave outputted from the second wavelength converting element; and a controller that manages temperature control of the first wavelength converting element by the first temperature control element, temperature control of the second wavelength converting element by the second temperature control element, and current value control of a driving current applied to the laser light source.
摘要:
A light emitting device including a waveguide having an electrically pumped gain region, a saturable absorber, a nonlinear crystal, an inclined mirror, and a light-concentrating structure. Light pulses emitted from the gain region are reflected by the inclined minor and focused by the light-concentrating structure into the nonlinear crystal in order to generate frequency-converted light pulses. The gain region, the saturable absorber, the light-concentrating structure and the inclined minor are implemented on or in a common substrate. The resulting structure is stable and compact, and allows on-wafer testing of produced emitters. The folded structure allows easy alignment of the nonlinear crystal.
摘要:
A method is provided for controlling second harmonic efficiency of laser beam interactions. A laser system generates two laser beams (e.g., a laser beam with two polarizations) for incidence on a nonlinear crystal having a preferred direction of propagation. Prior to incidence on the crystal, the beams are optically processed based on the crystal's beam separation characteristics to thereby control a position in the crystal along the preferred direction of propagation at which the beams interact.
摘要:
Apparatus for effecting harmonic conversion of a laser beam of predetermined frequency, to provide plural harmonic components of the laser beam at frequencies different from the predetermined frequency, includes a housing (40) defining a hermetically sealed chamber able to be maintained at a pressure below atmospheric pressure. Also provided are port means for evacuating the chamber, and means (36, 37) defining an optical path for the laser beam and the components thereof through the housing and the chamber. A plurality of individual holders (70, 72, 74) are arranged for retaining respective frequency conversion crystals at spaced locations in the optical path. The crystals (20, 22, 24) can be aligned individually and heated within the chamber.
摘要:
A laser illuminator and illumination method for use in an inspection system, such as a semiconductor wafer inspection system or photomask inspection system is provided. The design comprises generating fundamental frequency laser energy at different fundamental wavelengths, such as 998 nm, converting a portion of the fundamental frequency laser energy to 2nd harmonic frequency laser energy, further converting the 2nd harmonic frequency laser energy to 4th harmonic frequency laser energy, and mixing the 4th harmonic frequency laser energy with a portion of the fundamental frequency laser energy to produce laser energy at a sum frequency. Mixing is accomplished by non-critical phase matching in a crystal of Cesium Lithium Borate (CLBO). Alternately, the design may employ shifting a portion of the fundamental frequency laser energy to laser energy at a Raman line and/or mixing the 2nd harmonic frequency laser energy with a portion of the fundamental frequency laser energy to produce 3rd harmonic frequency laser energy.
摘要:
An optical antenna collects, modifies and emits energy at light wavelengths. Linear conductors sized to correspond to the light wavelengths are used. Nonlinear junctions of small dimension are used to rectify an alternating waveform induced upon the conductors by the lightwave electromagnetic energy. The optical antenna and junctions are effective to produce harmonic energy at light wavelengths. The linear conductors may be comprised of carbon nanotubes that are attached to a substrate material, which may then be connected to an electrical port.
摘要:
Methods of controlling semiconductor lasers are provided where the semiconductor laser generates an output beam that is directed towards the input face of a wavelength conversion device. Particular aspects of the present invention relate to alignment and/or intentional misalignment of a beam spot of an output beam on an input face of a wavelength conversion device. Additional embodiments are disclosed and claimed.
摘要:
An optical antenna collects, modifies and emits energy at light wavelengths. Linear conductors sized to correspond to the light wavelengths are used. Nonlinear junctions of small dimension are used to rectify an alternating waveform induced upon the conductors by the lightwave electromagnetic energy. The optical antenna and junctions are effective to produce harmonic energy at light wavelengths. The linear conductors may be comprised of carbon nanotubes that are attached to a substrate material, which may then be connected to an electrical port.