Abstract:
The invention relaters to a device (100) for biological analysis by measurement of photoluminescence in a fluid in a measurement tank (111). This device (100) comprises at least two light sources (121, 131) adapted to emit in different spectral areas respectively appropriate for measurement of absorption and fluorescence, and a sensor device (140) comprising a sensor (141), an optical system (142), and filter means (144), which three elements are mutualized in accordance with the invention to enable absorption and/or fluorescence to be measured. In accordance with the invention the internal gain of the sensor (141) is configurable to enable the fluorescence and absorption measurements to be executed sequentially.
Abstract:
The invention relaters to a device (100) for biological analysis by measurement of photoluminescence in a fluid in a measurement tank (111). This device (100) comprises at least two light sources (121, 131) adapted to emit in different spectral areas respectively appropriate for measurement of absorption and fluorescence, and a sensor device (140) comprising a sensor (141), an optical system (142), and filter means (144), which three elements are mutualized in accordance with the invention to enable absorption and/or fluorescence to be measured. In accordance with the invention the internal gain of the sensor (141) is configurable to enable the fluorescence and absorption measurements to be executed sequentially.
Abstract:
An inspection device for inspecting defects of an inspection object including a light source for irradiating a luminous flux to the inspection object; an optical system for guiding reflected light from the inspection object; a photoelectric image sensor having a plurality of photoelectric cells arranged, for converting the light guided to detection signals; a detection signal transfer unit having channels each constituted by a signal correction unit, a converter and an image formation unit, and corresponding to each of a plurality of regions formed by dividing the photoelectric image sensor, respectively; and an image synthesis unit for forming an image of the surface of the object by synthesizing partial images outputted; the inspection device inspecting defects of the object by processing the synthesized image; whereby it becomes possible to correct a detection signal from said photoelectric cell close to a predetermined reference target value.
Abstract:
A photomultiplier tube is susceptible to noise at a low concentration and to saturation at a high concentration. It is necessary to make a measurement with an appropriate intensity of light to provide good reproducibility and linearity. Only adjustment of reagent concentration and constituents are not sufficient to apply the photomultiplier tube to a wide range of concentration.When the sensitivity of the photomultiplier tube is to be adjusted by voltage, measurement is performed under the optimum condition by setting a voltage to be applied suitable for measurement according to a concentration range specified for measurement items and adjusting the voltage based on selected items, previous values for the selected items, diagnostic information, etc.
Abstract:
A photo-detector generated signal is measured as a sample set comprising a long signal and a short signal. The short signal is scaled to the value of the long signal if the long signal exceeds a dynamic range associated with the photo detector. In one embodiment, the short signal is obtained during a short time interval that is at the approximate middle of a long time interval such that the short and long intervals share a common median time value. Given such symmetry, an approximately linear signal yields a proportionality parameter between the long and short signals thereby allowing the short signal to be scaled. The proportionality parameter facilitates determination of an integration independent component of the photo detector signal that should be removed from the measured long and short signals before scaling. A plurality of sample sets can also be processed such that each sample set overlaps with its neighboring sample set, thereby increasing the effective number of sample sets.
Abstract:
A photo-detector generated signal is measured as a sample set comprising a long signal and a short signal. The short signal is scaled to the value of the long signal if the long signal exceeds a dynamic range associated with the photo detector. In one embodiment, the short signal is obtained during a short time interval that is at the approximate middle of a long time interval such that the short and long intervals share a common median time value. Given such symmetry, an approximately linear signal yields a proportionality parameter between the long and short signals thereby allowing the short signal to be scaled. The proportionality parameter facilitates determination of an integration independent component of the photo detector signal that should be removed from the measured long and short signals before scaling. A plurality of sample sets can also be processed such that each sample set overlaps with its neighboring sample set, thereby increasing the effective number of sample sets.
Abstract:
A photo-detector generated signal is measured as a sample set comprising a long signal and a short signal. The short signal is scaled to the value of the long signal if the long signal exceeds a dynamic range associated with the photo detector. In one embodiment, the short signal is obtained during a short time interval that is at the approximate middle of a long time interval such that the short and long intervals share a common median time value. Given such symmetry, an approximately linear signal yields a proportionality parameter between the long and short signals thereby allowing the short signal to be scaled. The proportionality parameter facilitates determination of an integration independent component of the photo detector signal that should be removed from the measured long and short signals before scaling. A plurality of sample sets can also be processed such that each sample set overlaps with its neighboring sample set, thereby increasing the effective number of sample sets.
Abstract:
A method of detecting an optical change in a series of test assays producing detectable results at varying efficiencies, the method comprising the steps of: a) selecting a test assay from the series, the selected assay having a known end-point photoresponse efficiency and a known filter center wavelength; b) providing a variable-intensity flash lamp illuminator comprising a lamp, a set of multiple filters with pre-selected center wavelengths assigned to particular assays, and a circuit for activating the lamp and comprising a capacitor, a power source, and a variable output voltage converter connected to the source and having its variable voltage output connected across the capacitor, the lamp and the filters providing a known level of system efficiency as a function of the center wavelength of the filter; c) providing a predetermined relationship of levels of illuminating intensities from the lamp as a function of photoresponse efficiencies of the assays and the system efficiencies, in which the photoresponse efficiencies of the assays are inversely proportional to the lamp intensities and the intensities are proportional to the square of the voltages applied to the lamp; d) selecting from the relationship a voltage applied to the lamp, and hence an intensity of the lamp, that corresponds to the known photoresponse efficiency of the assay selected in step (a) and its system efficiency based upon the filter center wavelength for the assay; and e) thereafter exposing the assay to the selected illuminating intensity.
Abstract:
A measuring apparatus of the present invention measures the constituent concentration of a specimen after loading into the apparatus a test piece having a test material which develops coloring as a result of a reaction with the constituents of a specimen. When the apparatus detects that the test piece having the test material has been loaded, it automatically begins to measure the constituent concentration of the specimen. That is, after the loading of the test piece is detected, a predetermined time period is measured. During this time measurement, the time period is displayed at a predetermined time interval. After the time measurement of this predetermined time period is terminated, the test material is irradiated with a light, and the intensity of the light from the test material is detected. The constituent concentration of the specimen applied to the test material can be determined on the basis of the reflected light intensity thus detected. Furthermore, this measuring apparatus can detect a reverse insertion of a test piece, and is constructed so as to disable the measurement of the constituent concentration of a specimen if supplementary information to be stored along with measurement information has not been set.