摘要:
A process and apparatus are provided for the present invention relates to a process for upgrading tar-containing effluent from a steam cracker furnace that comprises: a) contacting a steam cracker tar-containing effluent with steam and for a time, sufficient to convert at least a portion of the steam cracker tar to a mixture comprising lower boiling molecules and the steam cracker tar-containing effluent; and b) separating the mixture from step a) into i) at least one tar-lean product; and ii) a tar-rich product having a final boiling above the final boiling point of the at least one tar-lean product. Step a) can includes at least one of: 1) contacting said steam cracker tar-containing effluent with steam added to the effluent in a transfer line downstream of a steam cracker furnace comprising a quench inlet, with the steam added through or downstream of the quench inlet; 2) contacting the steam cracker tar-containing effluent with steam under heat soaking conditions in a heat soaking vessel to which the steam is added; and 3) contacting the steam cracker tar-containing effluent with steam under visbreaking conditions in a visbreaker. The steam treated tar can be separated into higher value gas oil, fuel oil and tar streams.
摘要:
A process for converting coal tar containing quinoline-insoluble particles (Q.I.) produces a substantially Q.I.-free coal tar pitch and a separate, Q.I.-containing coal tar pitch. Dehydrated coal tar, soft coal tar pitch or hard coal tar pitch are subjected to continuous cross flow filtration in a circulation loop to obtain a substantially Q.I.-free stream and, concurrently, a Q.I.-containing stream. The two streams are then separately subjected to further fractionation, if any, to produce the substantially Q.I.-free hard coal tar pitch and separate Q.I.-containing hard coal tar pitch.
摘要:
A unitary composite structure having improved flexural strength and a reduced coefficient of thermal expansion comprising a heterogeneous combination of a carbonaceous reinforcing material interbonded with a matrix material, wherein the said matrix material is a poorly graphitizing carbonaceous pitch containing polymerized and cross-linked aromatic components is disclosed. Graphite electrodes comprised of the poorly graphitized pitch matrix material acting as a binder and/or an impregnant are also disclosed. Processes for the preparation of the poorly graphitizing pitch, the composite structure, and particularly the graphite electrodes are disclosed as well.
摘要:
Commercially attractive continuous processes for the preparation of mesophase pitches for manufacturing high-performance carbon fibers are disclosed. One feature resides in that conversion of a pitch into a mesophase pitch is conducted continuously by using a unique continuous dispersion-heat-treating apparatus. The other feature resides in that the raw material for hydrogenation treatment which is a pretreatment preceeding to the final heat treatment for the production of a mesophase pitch, is prepared by using a heavy oil or pitch having substantially no BTX-insoluble material as the starting raw material, subjecting the raw material to a simple four-step treatment of (1) a continuous heat treatment in a tubular heater, (2) a distillation operation, (3) a BTX-solvent extraction and (4) a distillation operation; while recycling a soluble component obtained in the step (4) to the heat treatment of step (1) and recovering a BTX-solvent insoluble component formed in step (3) as the material for the hydrogenation treatment. This feature can provide a significant increase in the yield of a mesophase pitch. Furthermore, unexpectedly, the recycle of the soluble component into the heat treatment of step (1) is helpful to improve the characteristics of the ultimate products, i.e., carbon fibers or graphite fibers. Combination of the first and the second features, of course, can provide a better commercial success. In fact, the process of the present invention can provide a carbon fiber having a tensile strength of more than 300 kg/mm.sup.2 and a graphite fiber having a tensile strength of more than 400 kg/mm.sup.2 and a modulus of elasticity of no more than 60 ton/mm.sup.2. Processes with minor modifications to the above are also disclosed.
摘要:
A process for co-production of a pitch for the manufacture of HP carbon fibers and a pitch for the manufacture of GP carbon fibers is proposed. The pitch for the manufacture of GP carbon fibers is prepared from the spent fraction not used in the production of an optically anisotropic pitch suitable for the manufacture of HP carbon fibers. The spent fraction has hitherto been discarded as a valueless material. According to the present process, a pitch for the manufacture of so-called ultra HP carbon fibers with tensile strength of over 400 Kg/mm.sup.2 and modulus of elasticity of over 60 ton/mm.sup.2 and a pitch for the manufacture of GP carbon fibers can be produced simultaneously. Both pitches have very excellent spinnability and when they are spun, they cause no fiber cut-off even at a high spinning rate of, for example, 500 m/min or 700 m/min. One important merit of the process is that the production ratio of ultra HP carbon fibers and GP carbon fibers can easily be changed to accommodate to market's demand. Accordingly, the process has wide flexibility in operation. Of course, the effective utilization of valueless spent fraction can reduce the production costs of not only ultra HP carbon fibers but also GP carbon fibers.
摘要:
A method of removing salts from coal tar and coal pitches comprising washing coal tar or coal pitch in a pressure container with water and a carbon dioxide containing gas at a temperature and pressure near the critical point of the gas in the optional presence of at least one member of the group consisting of a solvent and an entraining agent, removing the liquid or dissolved tar or pitch to obtain tar or pitch with a low salt content and removing the aqueous phase whereby all the resins remain in the tar or pitch.