Abstract:
Crosslinked, melt-shaped articles are manufactured by a process that does not require the use of post-shaping external heat or moisture, the process comprising the steps of: A. Forming a crosslinkable mixture of a 1. Organopolysiloxane containing one or more functional end groups; and 2. Silane-grafted or silane-copolymerized polyolefin; and B. Melt-shaping and partially crosslinking the mixture; and C. Cooling and continuing crosslinking the melt-shaped article. Crosslinking is promoted by the addition of a catalyst to the mixture before or during melt-shaping or to the melt-shaped article.
Abstract:
Disclosed is a crosslinkable mixture comprising a polyolefin, an alkoxysilane, an organopolysiloxane, a free radical initiator and a liquid polymer modifier. The organopolysiloxane contains two or more hydroxyl end groups. When the crosslinkable mixture is melt-shaped, a unique crosslinked composition is formed. The liquid polymer modifier improves flexibility of the melt-shaped article without decreasing dielectric strength.
Abstract:
Disclosed is a crosslinkable mixture comprising a polyolefin, an alkoxysilane, an organopolysiloxane, a free radical initiator and a liquid polymer modifier. The organopolysiloxane contains two or more hydroxyl end groups. When the crosslinkable mixture is melt-shaped, a unique crosslinked composition is formed. The liquid polymer modifier improves flexibility of the melt-shaped article without decreasing dielectric strength.
Abstract:
A new rubber composition, the vulcanizate of which has reduced permeability to gases, comprises: one hundred parts by weight of at least one butyl-type rubbery polymer; from about 3 to about 20 parts by weight of .alpha.-methylstyrene homopolymer having a softening point of from about 93.degree. C. to about 150.degree. C. and a Tg of from about 15.degree. C. to about 75.degree. C.; from about 30 to about 90 parts by weight of at least one carbon black, from 0 to about 7 parts by weight of hydrocarbon extender oil; and a curing system. A process for producing said rubber composition is also provided.
Abstract:
A heat-curable biobased casting composition, including
(a) a mixture of two or more monofunctional acrylic and/or methacrylic monomers, wherein one or more monomers are derived from recycled material and one or more monomers are of vegetable or animal origin, (b) one or more polyfunctional acrylic and/or methacrylic biomonomers of vegetable or animal origin, (c) one or more polymers or copolymers selected from polyacrylates, polymethacrylates, polyols, polyesters derived from recycled material or of vegetable or animal origin, (d) inorganic filler particles of natural origin,
wherein the proportion of the monofunctional acrylic and/or methacrylic monomers and of the polyfunctional acrylic and methacrylic biomonomers is 10-40% by weight, the proportion of the polymer(s) or copolymer(s) is 1-16% by weight and the proportion of the inorganic filler particles is 44-89% by weight.
Abstract:
A thermoplastic elastomer for manufacturing a low environmental impact flexible hose for transporting fluids includes (A) 30%-80% by weight of a polymer matrix consisting of 10%-35% by weight with respect to the total weight of the thermoplastic elastomer of a first thermoplastic part (A1) and 20%-45% by weight with respect to the total weight of the thermoplastic elastomer of a second elastomeric part (A2); (B) 30%-55% by weight of a plasticizing agent; (C) 0%-30% by weight of a filler; and (D) 0%-10% by weight of an additive. The thermoplastic elastomer has a Shore A of 50 Sh A-85 Sh A and a percentage of post-consumer material greater than or equal to 50%. The thermoplastic elastomer is in an amount greater than or equal to 90% by weight on the total weight of the flexible hose.
Abstract:
Provided herein are mycelium materials and methods for production thereof. In some embodiments, a mycelium material includes: a cultivated mycelium material including one or more masses of branching hyphae, wherein the one or more masses of branching hyphae may be disrupted or pressed and/or a bonding agent may be combined with the cultivated mycelium material. Methods of producing a mycelium material are also provided.
Abstract:
The invention is directed to a pneumatic tire comprising a vulcanization rubber composition, the vulcanizable rubber composition comprising: from 30 to 90 phr of a first functionalized styrene-butadiene rubber having a glass transition temperature Tg1 ranging from −70 to −50° C.; from 10 to 50 phr of a second functionalized styrene-butadiene rubber having a glass transition temperature Tg2 ranging from −110 to −70° C.; wherein Tg2−Tg1 is at least 10° C.; from 0 to 40 phr of at least one additional elastomer; from 50 to 150 phr of silica; from 0 to 50 phr of a hydrocarbon resin; and from 10 to 50 phr of an oil.
Abstract:
The present invention relates to a polymer composition comprising at least one block copolymer and a specific amount of at least one oil component. The block copolymer, which is the polymeric matrix of the inventive composition, is built up from at least one vinyl aromatic monomer MA and at least one conjugated diene monomer MB, in particular the block copolymer is a styrene butadiene block copolymer (SBC).
Abstract:
[Problem] To provide a thermoplastic resin composition for use in an organ model, wherein said composition has a softness closer to that of an organ, a high mechanical strength, and a texture close to an organ, exhibits excellent durability, and can be handled easily. [Solution] A resin composition for an organ model, said composition containing, as component (A), 100 parts by mass of a hydrogenated block copolymer having an MFR (measured at a temperature of 230° C. and a load of 2.16 kg) of 1 g/10 min. or less, and an oil as component (B). Moreover, the composition may also contain a cross copolymer as component (C), a polypropylene resin as component (D), and a filler as component (E).