Abstract:
An energy extraction system for a rotational surface including a drive mechanism having a rotational axis and configured to rotatably couple to the rotational surface and an energy extraction mechanism coupled to the drive mechanism. The drive mechanism includes a cam rotatable about the rotational axis and an eccentric mass coupled to the cam that offsets a center of mass of the drive mechanism from the rotational axis, the eccentric mass cooperatively formed by a first and a second section, the eccentric mass operable between a connected mode wherein the first and second sections are adjacent and a disconnected mode wherein the first and second sections are separated. The energy extraction mechanism is connected to the cam and is statically coupled to the rotating surface, wherein the energy extraction mechanism configured to extract energy from relative rotation between the energy extraction mechanism and the cam.
Abstract:
The invention relates to a tyre-pressure adjusting device (8) for a tyre inflation-system (2, 102) of a vehicle (1), for distributing a compressed-air supply (5) to a plurality of pneumatic apparatuses (10, 11) each comprising a rotary transmitter (24) and for measuring the tyre pressures of vehicle tyres (3, 4) connected to the rotary transmitters (24), wherein the tyre-pressure adjusting device (8) at least comprises: a control apparatus (6) for receiving a pressure measurement signal (S4) and outputting control signals (S1, S2, S3) and a modulation valve apparatus (14, 16, 18) for receiving the control signals (S1, S2, S3) and for pneumatically activating one of a plurality of connected rotary transmitters (24) in order to fill and to measure the pressure of at least one vehicle tyre (3, 4) connected to the rotary transmitter (24). According to the invention, the modulation valve apparatus (14, 16, 18) comprises a rotary valve (18), which has a control element (32) that can be rotated into a plurality of rotational positions. The control element activates one of the plurality of pneumatic apparatuses (10, 11) in each of the rotational positions of the control element.
Abstract:
A rotary feedthrough for a motor vehicle wheel having tire pressure regulation comprises a wheel carrier and a wheel hub rotatably supported on the wheel carrier. A compressed air annular space and at least one annular lubricant space, which are sealed with respect to one another, are configured in an intermediate space between the wheel carrier and the wheel hub. In this respect, the compressed air annular space communicates with a compressed air passage of the wheel carrier and with a compressed air passage of the wheel hub, wherein the compressed air passage of the wheel hub communicates with a controllable valve in order selectively to fill a tire of the motor vehicle wheel with compressed air or to deflate the tire. The annular lubricant space in turn communicates with a lubricant passage of the wheel carrier and with a lubricant passage of the wheel hub, wherein the lubricant passage of the wheel hub leads to a control port of the valve in order selectively to control the valve for the passage of compressed air.
Abstract:
A module for detecting a vibrational behavior of a mechanical component includes an attachment component configured to be rigidly mechanically connected to the mechanical component in order to absorb a mechanical vibration of the mechanical component, a circuit board including a circuit, the circuit board being configured to detect the mechanical vibration of the mechanical component and, based on the detected vibration, to wirelessly transmit a signal indicative of the vibrational behavior, and at least one spacer mechanically connecting the circuit board to the attachment component such that the mechanical vibration is transferable from the attachment component to the circuit board.
Abstract:
An energy extraction system for a rotational surface including a drive mechanism having a rotational axis and configured to rotatably couple to the rotational surface and an energy extraction mechanism coupled to the drive mechanism. The drive mechanism includes a cam rotatable about the rotational axis and an eccentric mass coupled to the cam that offsets a center of mass of the drive mechanism from the rotational axis, the eccentric mass cooperatively formed by a first and a second section, the eccentric mass operable between a connected mode wherein the first and second sections are adjacent and a disconnected mode wherein the first and second sections are separated. The energy extraction mechanism is connected to the cam and is statically coupled to the rotating surface, wherein the energy extraction mechanism configured to extract energy from relative rotation between the energy extraction mechanism and the cam.
Abstract:
A tire inflation arrangement on a vehicle, said arrangement comprising a rotatable part with a rotatable air passage connected to an air supply and a tire. The arrangement comprises a non-rotatable part on, or through which air from the air supply is conducted. One of said parts is provided with a sealing means for co-operating with a contact surface of the other part. A first valve means (222) and a second valve means (223) are positioned in series along a supply line which extends between the tire and the air supply and each of said valve means (222, 223) is moveable between an open and a closed position in which the flow of air along the supply line is permitted and blocked respectively.
Abstract:
An energy extraction system for a rotational surface including a drive mechanism having a rotational axis and configured to rotatably couple to the rotational surface and an energy extraction mechanism coupled to the drive mechanism. The drive mechanism includes a cam rotatable about the rotational axis and an eccentric mass coupled to the cam that offsets a center of mass of the drive mechanism from the rotational axis, the eccentric mass cooperatively formed by a first and a second section, the eccentric mass operable between a connected mode wherein the first and second sections are adjacent and a disconnected mode wherein the first and second sections are separated. The energy extraction mechanism is connected to the cam and is statically coupled to the rotating surface, wherein the energy extraction mechanism configured to extract energy from relative rotation between the energy extraction mechanism and the cam.
Abstract:
A wheel hub drive with a planetary transmission includes a wheel hub rotatably mounted on a fixed component and at least one fluid-carrying passage. The fixed component is configured to receive a tire with a gaseous filling. The at least one fluid-carrying passage extends indirectly as far as the tire through the fixed component in order to regulate the gas pressure in the tire. An annular rotary union defines at least a portion of the at least one fluid-carrying passage and is configured to connect the fixed component fluidically to the tire. The annular rotary union is arranged axially between the fixed component and the rotatably mounted wheel hub.
Abstract:
A tire inflation system having a spindle that has a spindle fastener hole and spindle passage through which a pressurized gas flows for inflating a tire. An adapter or a fastener tube may inhibit pressurized gas from flowing from the spindle passage into the spindle fastener hole.
Abstract:
A tire inflation system for a vehicle. The tire inflation system may include a pressure equalization valve assembly that may receive the pressurized gas from a pressurized gas source and may control the flow of pressurized gas with respect to a first tire and a second tire.