Abstract:
An in-vivo information acquiring apparatus includes an information acquiring unit that acquires in-vivo information, a transmitting unit that transmits the in-vivo information to an outside of a living body, a power source that serves to supply power to the information acquiring unit and the transmitting unit, a power supply unit that is provided between the power source and at least one of the information acquiring unit and the transmitting unit so as to supply the power of the power source to at least one of the information acquiring unit and the transmitting unit, an external signal detecting unit that detects an external control signal supplied from outside and generates a control signal according to a detected state of the external control signal, a power supply controller that controls a power supply state of the power supply unit according to the control signal supplied from the external signal detecting unit, and a masking unit that masks the control signal supplied to the power supply controller by the external signal detecting unit for a predetermined time period.
Abstract:
The present invention provides a strap device capable of, when used in a state of being attached to an electronic apparatus body including a display portion and a key input portion as an object, improving the visibility of the display portion and the operability of the key input portion and the touch panel without tilting the electronic apparatus body with the wrist. A strap device includes a substantially plate-shaped belt base to be attached to the object; and a strap belt formed in an annular shape and supported by a substantially center portion of the belt base rotatably within a plane substantially parallel to the belt base. The belt base includes a back part provided with a pivot fitting as a bearing member for supporting the strap belt rotatably and a front part facing the back part. The strap belt extends across the belt base from the front part to the back part of the belt base.
Abstract:
A back protective sheet for a solar cell module in which a fluorine resin layer containing a pigment is formed on at least one side of a base sheet, wherein the density of the pigment in the direction of thickness of the fluorine resin layer is higher on the side opposite from the base sheet than on the side facing the base sheet.
Abstract:
An electronic device, including a substrate, a functional structure constituting a functional element formed on the substrate, and a cover structure forming a cavity portion in which the functional structure is disposed, is disclosed. In the electronic device, the cover structure includes a laminated structure of an interlayer insulating film and a wiring layer, the laminated structure being formed on the substrate in such a way that it surrounds the cavity portion, and the cover structure has an upside cover portion covering the cavity portion from above, the upside cover portion being formed with part of the wiring layer that is disposed above the functional structure.
Abstract:
A dynamoelectric machine that can suppress increases in rotor inertia to extend belt service life and increase field magnetomotive force to increase output. In the dynamoelectric machine, first and second magnetic guidance members are fitted into first and second holding grooves that are disposed so as to extend axially on facing portions of first and second trough portions radially outside inner wall surfaces, and are disposed so as to span over first and second trough portions. First and second permanent magnets that are magnetically oriented in a reverse direction to a magnetic field that originates from a field coil are fitted into and held by interfitting grooves of the first and second magnetic guidance members so as to face inner circumferential surfaces near tip ends of second and first claw-shaped magnetic pole portions so as to have a predetermined clearance.
Abstract:
A driver circuit according to the present invention includes a grayscale circuit, an amplifier circuit, a comparison circuit, and a sampling timing adjusting circuit. The grayscale circuit generates a grayscale voltage from grayscale data. The amplifier circuit generates a video output from the grayscale voltage. The comparison circuit compares the grayscale voltage with the video output and outputs a comparison result. The sampling timing adjusting circuit adjusts a sampling timing signal for sampling the video signal based on the comparison result to generate an adjusted sampling timing signal.
Abstract:
An electrostatic spray device that maintains a consistent charge-to-mass ratio in order to maintain a consistent target spray quality is disclosed. During steady state conditions, the high voltage power supply adjusts the output voltage level in response to changing environmental and/or operating conditions. During transient conditions such as start-up, shut-down and changing flow rate conditions, the high voltage power supply ensures that the charge-to-mass ratio is maintained. During, start-up, for example, the high voltage power supply charges the high voltage electrode to a predetermined voltage level before the product is delivered to the charging location. During shut-down, the product delivery is stopped before the high voltage power supply shuts off power to the high voltage electrode, and during changes in product flow rate, the voltage level of the high voltage electrode is adjusted to maintain a consistent charge-to-mass ratio. The present invention also prevents afterspray by discharging the stored charge remaining in storage elements of the high voltage power supply.
Abstract:
A microelectromechanical system (MEMS) device includes a semiconductor substrate, a MEMS including a fixed electrode and a movable electrode formed on the semiconductor substrate through an insulating layer, and a well formed in the semiconductor substrate below the fixed electrode. The well is one of an n-type well and a p-type well. The p-type well applies a positive voltage to the fixed electrode while the n-type well applies a negative voltage to the fixed electrode.
Abstract:
It is an object to prevent the image quality deterioration of a moving image likely to include a plurality of the same consecutive images such as a movie video and an animation video due to the motion-compensated frame rate conversion (FRC) processing. An image displaying device is provided with an FRC portion (10) for converting the number of frames in an input image signal by interpolating an image signal to which a motion compensation processing has been given between the frames in the input image signal, a genre determining portion (14) for determining whether the input image signal is a predetermined genre, and a controlling portion (15). The FRC portion (10) includes a motion vector detecting portion (11e) for detecting a motion vector between the frames of the input image signal, an interpolating vector evaluating portion (11f) for allocating an interpolating vector between the frames based on the motion vector information, and an interpolating frame generating portion (102) for generating an interpolating frame from the interpolating vector. In the case that the input image signal is relating to a movie or animation, the control portion (15) set the motion vector detected by the motion vector detecting portion (11e) to zero-vector to make the motion compensation processing of the FRC portion (10) ineffective.
Abstract:
A down sampler 13 down samples a digital signal in the sampling frequency thereof from 96 kHz to 48 kHz on a frame-by-frame basis. The converted signal is compression encoded and output as a main code Im. An up sampler 16 converts a partial signal corresponding to the main code Im to a signal having the original sampling frequency 96 kHz, for example. An error signal between the up sampled signal and an input digital signal is generated. An array converting and encoding unit 18 array converts bits of sample chains of the error signal, thereby outputting an error code Pe. On a decoding side, a high fidelity reproduced signal is obtained based on the main code Im and the error code Pe, or a reproduced signal is obtained based on the main code Im only.