Abstract:
An electrophotographic photoreceptor includes an organic photosensitive layer and one or more inorganic thin film layers disposed in this order on a conductive substrate, in which among the one or more inorganic thin film layers at least an inorganic protective layer disposed directly on the organic photosensitive layer has cracks scattered at intervals from about 1 μm to about 10 mm. The inorganic thin film layer having the cracks is a first protective layer and an inorganic thin film is grown on a surface of the first protective layer to form a second protective layer.
Abstract:
Disclosed is a multiband planar antenna including: an insulating film, a first antenna section and a second antenna section facing to the first antenna section across a feeding point on a film, wherein the first antenna section includes: a first antenna element including a side having a length in an extending direction corresponds to a first resonance frequency; a shorter second antenna element at a predetermined distance from and in parallel with the first antenna element; and a first coupling section to couple the first and second antenna elements, wherein a length in the extending direction of a first clearance corresponds to a resonance frequency higher than the first resonance frequency, and wherein the second antenna section includes: third and fourth antenna elements; a second coupling section; and a second clearance similar to the above.
Abstract:
According to an embodiment, a plane circular polarization antenna comprises a flat insulating substrate and a conductor provided on the flat insulating substrate. The conductor comprises an inverted F antenna including a feeding point, a ground portion, the ground portion including a slot antenna including a slot, and a short-circuiting portion provided in a part of an area between the inverted F antenna and the slot antenna.
Abstract:
A light detection device which can be stably surface-mounted on, for example, a circuit board or the like, and a mounting method thereof are provided. A light-receiving element includes, a transparent conductive electrode (first electrode), a semiconductor layer, and an electrode (first electrode), which are sequentially laminated on a transparent substrate. An insulative substrate includes a terminal electrode (second electrode) which is provided to be exposed at first and second faces of the insulative substrate. The light-receiving element is disposed at the first face of the insulative substrate, and the transparent conductive electrode and the electrode are electrically connected with the terminal electrode exposed at the first face of the insulative substrate. Hence, the light detection device with this structure is surface-mounted on the circuit board such that the terminal electrode exposed at the second face of the insulative substrate connects with an external terminal of the circuit board.
Abstract:
An ultraviolet ray measuring method using an ultraviolet ray receiving element having a specific spectral sensitivity. The method includes: estimating an estimated value of an entire region from the spectral sensitivity of the ultraviolet ray receiving element and a solar spectral radiation spectrum; estimating an estimated value of a specific region from a specific action curve and the spectral sensitivity and the solar spectral radiation spectrum; and determining specific ultraviolet ray information by, on the basis of the estimated value of the entire region and the estimated value of the specific region, correcting an actually measured value which is measured by the ultraviolet ray receiving element. Further, specific ultraviolet information, which is obtained on the basis of sun altitude information, is also corrected.
Abstract:
A thin film transistor has, on a transparent substrate, a transparent semiconductor layer containing nitrogen, hydrogen and one or more elements selected from Al, Ga and In, a transparent source electrode and a transparent drain electrode at least partially in contact with the transparent semiconductor layer, and a transparent gate electrode.
Abstract:
A UV light sensing element has at least a first electrode and a sensor. The first electrode has a semiconductor containing at least one element selected from Al, Ga and In together with nitrogen or oxygen, and the sensor layer has a semiconductor containing at least one element selected from Al, Ga and In together with nitrogen. A longer wavelength end of an absorption spectrum for the first electrode is located at a position nearer to a shorter wavelength side than a longer wavelength end of an absorption spectrum for the sensor.
Abstract:
Provided is a method and apparatus for the production of a semiconductor device, the method and the apparatus producing a high quality and highly functional semiconductor device efficiently at low temperatures in a short time and also a high quality and highly functional semiconductor device produced by the method and apparatus. The semiconductor device is produced by forming a film of a nitride compound on a substrate having heat resistance at 600° C. or less, wherein the nitride compound includes one or more elements selected from group IIIA elements of the periodic table and a nitrogen atom and produces photoluminescence at the band edges at room temperature. The method for producing a semiconductor device comprises introducing an organic metal compound containing one or more elements selected from group IIIA elements of the periodic table intermittently in an activated environment, while continuously activating a nitrogen compound, to form a film of a nitride compound containing nitrogen and the group IIIA elements on a substrate.
Abstract:
Provided is a method and apparatus for the production of a semiconductor device, the method and the apparatus producing a high quality and highly functional semiconductor device efficiently at low temperatures in a short time and also a high quality and highly functional semiconductor device produced by the method and apparatus. The semiconductor device is produced by forming a film of a nitride compound on a substrate having heat resistance at 600° C. or less, wherein the nitride compound includes one or more elements selected from group IIIA elements of the periodic table and a nitrogen atom and produces photoluminescence at the band edges at room temperature. The method for producing a semiconductor device comprises introducing an organic metal compound containing one or more elements selected from group IIIA elements of the periodic table intermittently in an activated environment, while continuously activating a nitrogen compound, to form a film of a nitride compound containing nitrogen and the group IIIA elements on a substrate.
Abstract:
It is to provide an essentially transparent solar cell of high efficiency that can be used by accumulating with a display device to generate electricity simultaneously with utilization of the display function, a self-power-supply display device comprising the same, and a process for producing the solar cell. The solar cell comprises at least a transparent conductive substrate having thereon a photoconductor layer that is transparent to a visible ray and has an absorbance of 0.8 or less at a wavelength of from 400 to 800 nm, and a transparent conductive electrode in this order. An embodiment, in which the photoconductor layer contains at least one element selected from Group IIIA elements and at least one element selected from Group VA elements in the Periodic Table, and an embodiment, in which the photoconductor layer contains a metallic oxide semiconductor, are preferred. Furthermore, an embodiment, in which the metallic oxide semiconductor is titanium oxide or zinc oxide, and an embodiment, in which the photoconductor layer has an optical gap of 2.8 eV or more, are preferred.